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Objective
� Post-hoc Instance-Level Explainability Given model f (·) and input

graph G, find minimal and sufficient subgraph Gs = Ψ(G) w.r.t f (·).
� Research Question 1: How to quantify Minimality and Sufficiency?

� Research Question 2: How to design explainer mechanisms to optimize

the resulting objective?

� Research Question 3: How to overcome the locality of the computation

graph of GNNs to design explainers for multi-motif scenarios?

Graph Information Bottleneck
� Graph Information Bottleneck (GIB): Tradeoff between Minimality and

Sufficiency

Ψ(·) , arg min
Ψ:G 7→Gs

I(G ; Gs) − αI(Y ; Gs),

� Used to train various explainers such as: PGExaplainer, GSAT, and Mixu-

pExplainer.

� I(G ; Gs) and I(Y ; Gs) difficult to estimate, consequently, surrogates

used in practice.

Shortcomings of GIB
� Minimality Quantification: I(G ; Gs) allows leakage of low-entropy

components into explanation.

� Sufficiency Quantification: I(Y ; Gs) leads to a signaling issue.

� Theorem 1: For a graph classification task parametrized by PG,Y , as-
sume that there exists a mapping h : G → Y such thatG ↔ h(G) ↔ Y
holds. Then, for any α > 0, there exists an explanation algorithmΨα(·)
such that G ′ , Ψα(G) optimizes the objective function in GIB and

Ψα(G) ↔ h(G) ↔ G holds.

Modified Objective Function
� Modified Objective Function:

Ψ(·) = arg min
Ψ:G 7→Gs

max(EG(|Gs |), β) + αEG(CE (Y ; f (Gs))),

� Gs is OOD with respect to PG .

� Example: In MUTAG, inputs have tens of vertices, however, explanation

subgraphs have few vertices.

� The OOD issue is addressed in recent follow-up works.

Locality of Explanation Method
� Local Explanation Methods: Consider a graph classification task PG,Y ,

classifier f : G → Y , a parameter r ∈ N, and an explanation function

Ψ : G → G, where G is the set of all possible input graphs, and Y is the

set of output labels. Let G ′ = Ψ(G) = (V ′, E ′; Z′, A′). The explanation
functionΨ(·) is called an r -local explanation function if:

1. The Markov chain 1(v ∈ V ′) ↔ Gv ,r ↔ G holds for all v ∈ V ,

where 1(·) is the indicator function.

2. The edge (v , v ′) is in E ′ if and only if v , v ′ ∈ V ′ and e ∈ E .

� Explanationmethods which rely on GNN node embeddings, such as PG-

Explainer are local.

Suboptimality of Local Methods
� Theorem 2: Let r , r ′ ∈ N. There exist classification problems for which:

a) The optimal Bayes classification rule f ∗(g) is 1(∃i ∈ [s] : gi ⊆ g).
b) For any r-local explanation function, there exists α′ > 0 such that the

explanation is suboptimal for f ∗ in themodified GIB sense for allα > α′

and β equal to maximum number of edges of gi , i ∈ [s].
c) There exists k ≤ s , a parameter α′ > 0, a collection of r ′-local ex-

planation functionsΨi(·), i ∈ [k], and an explanation functionΨ∗, such

that for all inputs g , we haveΨ(g) ∈ {Ψ1(g),Ψ2(g), · · · ,Ψk(g)} and

Ψ∗ is optimal in the modified GIB sense for all α > α′ and γ equal to

maximum number of edges of gi , i ∈ [s].
� The theorem suggest that we can ‘patch’ together local explainers to

construct optimal explanation functions.
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Step 1: The original GNN produces node embeddings. Step 2: Graph/edge embeddings produced by concatenation. Step 3: MLP sequence produce edge probabil-

ities. Step 4: Ψ0 MLP produces weights for each prediction. Step 5: Compute weighted average of predictions. Step 6: Loss calculated by comparing GNN output

for subgraph

Experimental Results
BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG

GRAD 0.882 0.750 0.905 0.667 0.717 0.783

ATT 0.815 0.739 0.824 0.612 0.674 0.765

RGExp. 0.985±0.013 0.919±0.017 0.787±0.099 0.927±0.032 0.657±0.107 0.873±0.028
DEGREE 0.993±0.005 0.957±0.010 0.902±0.022 0.925±0.040 0.755±0.135 0.773±0.029
GNNExp. 0.742±0.006 0.708±0.004 0.540±0.017 0.714±0.002 0.499±0.004 0.606±0.003
PGExp. 0.999±0.000 0.825±0.040 0.760±0.014 0.679±0.008 0.566±0.004 0.843±0.162

K-FactExplainer 1.000±0.000 0.974±0.004 0.779±0.004 0.770±0.004 0.821±0.005 0.915±0.010

Explanation faithfulness in terms of AUC-ROC on edges under six datasets.
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