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Objective

Post-hoc Instance-Level Explainability Given model f(-) and input
graph G, find minimal and sufficient subgraph G = W(G) w.r.t f(-).

Research Question 1: How to quantify Minimality and Sufficiency?

Research Question 2: How to design explainer mechanisms to optimize
the resulting objective?

Research Question 3: How to overcome the locality of the computation
graph of GNNs to design explainers for multi-motif scenarios?

Shortcomings of GIB

Minimality Quantification: /(G; G;) allows leakage of low-entropy
components into explanation.

Sufficiency Quantification: /(Y’; Gs) leads to a signaling issue.

Theorem 1: For a graph classification task parametrized by Pg vy, as-
sume that there exists a mapping h: G — Y suchthat G < h(G) «< Y
holds. Then, for any a > 0, there exists an explanation algorithm W, (-)
such that G’ = W, (G) optimizes the objective function in GIB and

V,(G) < h(G) <> G holds.

Locality of Explanation Method

Local Explanation Methods: Consider a graph classification task Pg v,
classifier f : G — ), a parameter r € N, and an explanation function
V: G — G, where G is the set of all possible input graphs, and ) is the
set of output labels. Let G' = V(G) = (V', &, Z', A’). The explanation
function W(-) is called an r-local explanation function if:

1. The Markov chain 1(v € V') <+ G,, <> G holds for all v € V,
where 1(-) is the indicator function.

2. Theedge (v,v')isin& ifandonlyif v,v' € V' ande € £.

B Explanation methods which rely on GNN node embeddings, such as PG-

Explainer are local.

Graph Information Bottleneck

Graph Information Bottleneck (GIB): Tradeoff between Minimality and
Sufficiency

V() = argmin(G; G,) —al(Y; G.),
V:G— G
Used to train various explainers such as: PGExaplainer, GSAT, and Mixu-

pExplainer.

I(G; Gs) and I(Y; Gs) difficult to estimate, consequently, surrogates
used in practice.

Modified Objective Function

Modified Objective Function:

W(-) = arg min max( Lc(CE(Y; f(Gs))),

V:G— G

B G, is OOD with respect to Pg¢.

B Example: In MUTAG, inputs have tens of vertices, however, explanation

subgraphs have few vertices.

The OOD issue is addressed in recent follow-up works.

Suboptimality of Local Methods

Theorem 2: Let r, r’ € N. There exist classification problems for which:
a) The optimal Bayes classification rule f*(g) is 1(3i € [s] : gi C g).

b) For any r-local explanation function, there exists &’ > 0 such that the
explanation is suboptimal for f* in the modified GIB sense for all &« > o’
and (8 equal to maximum number of edges of g;, i € [s].

c) There exists k < s, a parameter o/ > 0, a collection of r’-local ex-
planation functions W;(-), i € [k], and an explanation function ¥*, such
that for all inputs g, we have V(g) € {Vi1(g), Va(g), -, Vik(g)} and
V* is optimal in the modified GIB sense for all &« > «’ and ~ equal to
maximum number of edges of g;, i € [s].

The theorem suggest that we can ‘patch’ together local explainers to
construct optimal explanation functions.
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The original GNN produces node embeddings. Step 2: Graph/edge embeddings produced by concatenation.

MLP sequence produce edge probabil-

ities. Step 4: Wy MLP produces weights for each prediction. Step 5: Compute weighted average of predictions. Step 6: Loss calculated by comparing GNN output

for subgraph

Experimental Results
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