United States Patent

US011309061B1

(12) ao) Patent No.: US 11,309,061 B1
Haseeb et al. 45) Date of Patent: Apr. 19, 2022
(54) SYSTEMS AND METHODS FOR PEPTIDE 2005/0209833 Al* 9/2005 Bishopccccovevnn HO4L 67/22
IDENTIFICATION 703/2
2013/0117326 Al1* 5/2013 De Smet GOGF 9/4488
: . P . 707/798
(71) AppllcantS'MUhammad Has.eel:).5 Mlaml’ FL ([JS)5 2014/0143789 Al % 5/20 14 Na.d.at}lur """"""""""" G06F 9/505
Fahad Saeed, Miami, FL. (US) 718/105
. 2020/0243164 Al* 72020 Qia0cccooeeveeinnnn G16B 25/10
(72) Inventors: Muhammad Haseeb, Miami, FL. (US); (Continued)
Fahad Saeed, Miami, FL (US)
(73) Assignee: THE FLORIDA INTERNATIONAL OTHER PUBLICATIONS
UNIVERSITY BOARD OF Kulkarni et al. “A scalable parallel approach for peptide identifi-
TRUSTEES, Miami, FL (US) cation from large-scale mass spectrometry data.” 2009 International
(*) Notice: Subject to any disclaimer, the term of this gmfér;ggeg; f Parallel Processing Workshops. IEEE, pp. 423-430
patent is extended or adjusted under 35 cat ’ .
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. No.: 17/366,618 Primary FExaminer — Meng AiT An
Assistant Examiner — Willy W Huaracha
(22) Filed: Jul. 2, 2021 (74) Attorney, Agent, or Firm — Saliwanchik, Lloyd &
Eisenschenk
(51) Imt.CL
G16B 35/10 (2019.01) 57 ABSTRACT
g;gﬁ ;/05/20 (38(1)281) Provided are parallel computational methods and their
GI6B 40/10 (201 9' 0 l) implementation on memory-distributed architectures for a
(01) peptide identification tool, called HiCOPS, that enables
(52) US. L more than 100-fold improvement in speed over existing
CPC e G16B 35/10 (2019.02); GOGF 9/505 HPC proteome database search tools. HICOPS empowers
(2013.01); GOGF 9/5016 (2013.01); G16B the supercomputing database search for comprehensive
. 40{ 10 (2.019'02); G168 50/30 (2019.02) identification of peptides and all their modified forms within
(58) Field of Classification Search a reasonable timeframe. Searching Gigabytes of experimen-
CPC ... G16B 35/10; G16B 50/30; G168 40/10; tal mass spectrometry data against Terabytes of databases
GOGF 9/5016; GOGF 9/505 demonstrates peptide identification in minutes compared to
See application file for complete search history. days or weeks, providing multiple orders of magnitude
. improvements in processing times. Also provided is a theo-
(56) References Cited retical framework for a novel overhead-avoiding strategy,

U.S. PATENT DOCUMENTS

9,354,236 B2* 5/2016 Albar Ramirez G16B 20/00
2004/0044481 Al* 3/2004 Halpern G16B 50/00
702/19

Legend 8 porai proven

prraiief sl test

resulting in superior performance evaluation results for key
metrics including execution time, CPU utilization, and I/O
efficiency.

16 Claims, 19 Drawing Sheets
o oo

'?’@%-.]

S eRta
\ir RRUCTSSIOG

e B S ge o

segraasio spectra oy :

US 11,309,061 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2020/0303034 Al* 9/2020 Parkcccccoveenne G16B 35/20
2020/0381231 Al* 12/2020 Bailey . HO01J 49/0036
2021/0041454 Al* 2/2021 Tsou G16B40/20
2021/0215707 Al* 7/2021 Marcotte G16B 50/00

OTHER PUBLICATIONS

Haseeb et al. “LBE: A computational load balancing algorithm for
speeding up parallel peptide search in mass-spectrometry based
proteomics.” 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, pp. 191-198
(Year: 2019).*

Haseeb et al. “HiCOPS: High Performance Computing Framework
for Tera-Scale Database Search of Mass Spectrometry based Omics
Data.” arXiv preprint arXiv:2102.02286, pp. 1-37. (Year: 2021).*

* cited by examiner

US 11,309,061 B1

Sheet 1 of 19

Apr. 19, 2022

U.S. Patent

| g

- . U ding paeds passmeed-and |
Leinie Sy :
it

st 2o

A

o S R

DR

FOLIIET A e

Autssaveaid
eynaad o\wvf

graang lanbaed

Sy e

US 11,309,061 B1

Sheet 2 of 19

Apr. 19, 2022

U.S. Patent

Z angig

| yse3-gns (ajpeied) suotendo () 4
BALE LB 0D BAISUBIU O/ aasuByll sydiod spysy iaeled eyep

S ok o ket ke B R ok Ao e o kot S Rk A ok et el el ke b R o Aok e it o o o Ao ek ot e R SO ok ot o e ol oo e o, ek o s kol e o ety Ao o o ik o ot ek ol 8ok e st o ik e ek o8l o e ik b e o ot e e S ke o it W ke otk

Hnsad WaIsAs
,,,,,,, . 7 2jif paipys

o o e

i e 02 0

25

U.S. Patent Apr. 19,2022 Sheet 3 of 19 US 11,309,061 B1

Figare 3A

U.S. Patent Apr. 19,2022 Sheet 4 of 19 US 11,309,061 B1

o o
o o
i i

o
w
3

<
<

Nodes

Figure 3B

US 11,309,061 B1

Sheet 5 of 19

Apr. 19, 2022

U.S. Patent

¢ am3Lg

ER LRy $BPON

2

09 05 Op BE 02 O D 09 0S5 ©Ob O0E @ 0 B

P, W 3 R4 14 éﬂ? ommmmmciti, .W..,,
,ﬁf 4 : o LR 1L I L : m s/m
e LR LN s »\3.., TGOS I : i
& S b4 ” M :
ol : i s : 3
e : Eo £ L <
003 bk "~
St B 4 : ww :
8 : I z Fa
2 : iy
o Mv\w ZER e “ : 2 o hw.w"
A : : w 5 .l
pARIE-TURRES Lo HED mv
A o, : :
grg g | © e T et
S TR hed

@
o> <
{365 o sad 1wy

<
o

o™
4
v

b
o

W

U.S. Patent Apr. 19,2022 Sheet 6 of 19 US 11,309,061 B1

Q

sossk
L

I3 -
e : %
it I -
ot 4
- :

-y
L2

Load Imbalance (%)

Figore 4A

U.S. Patent Apr. 19,2022 Sheet 7 of 19 US 11,309,061 B1

Comm Qverheads (%) o

Nodes

Figure 4B

U.S. Patent Apr. 19,2022 Sheet 8 of 19 US 11,309,061 B1

@)

1/O Overheads (%)

Nodes

Figure 4C

U.S. Patent Apr. 19,2022 Sheet 9 of 19 US 11,309,061 B1

o
>

-
o s T2

Figure 4D

US 11,309,061 B1

Sheet 10 of 19

Apr. 19, 2022

U.S. Patent

dp 2m3y
e1ep 40 pus £12P 40 pus e1ep 4o pua
DLL e 0 3
Jaguinu yoyey
004 009 00§ oov 00€ 002 001
Y SN N SO . TTE _.. -
mm w : m Y | % o0
@ % ” : 3 : 4
: P : 4 x4
2 * : : B
¥ : : : :
w . :
K]
H
H

DEL e

US 11,309,061 B1

Sheet 11 of 19

Apr. 19, 2022

U.S. Patent

oz1 01t

G amgy

auoassadiy
Q0L 06

§ pnsal nut peyduwes
¢ mnsad gu pardwes
Z ‘ynsat qu pajdwes
Lansss nu paydwes
pus uoibas Bugdwes

Bag voibas Buydwes .

SLCIINGLIISIP [IDU SlRIpatliajul

- 01

15

b

309,061 B1

Sheet 12 of 19 US 11

Apr. 19, 2022

L AIBif
elEp £AD2US aseqelep saouaNnbas aseqgeiep
SIN/SIA jeruauadxy e42ads-0pnasd apidad 23uanbas uBjod

k Jsadip
E - :
; YAIOVADAS | g
HIANYIND
YdSYVYL
AdVd¥ddidL
AADYNSSA
9 2In31g
gyep eayoady Answiossds Aydeidojewony) BN ajduwies
feruaiuadxy SSRIN pmbn s3pdad

U.S. Patent

US 11,309,061 B1

Sheet 13 of 19

Apr. 19, 2022

U.S. Patent

jotnd

uonned

g g1

US 11,309,061 B1

Sheet 14 of 19

Apr. 19, 2022

U.S. Patent

€6 2In31g
RPN
) 0.0 < i i i i i .7 o 0
1 MQ 3 H H
90 1
RV - &0 - ¢
gL) g 00
g it ¥ o
B % 007 3
f o. e
jAld £ "
& 2
5 24149
3
#< §itin
{2 ‘v80 ‘col=tw
V6 231y
L0 8
o0 0
0 57
FEG D
a -8
g g =
-9 B a £7 m,
H o 7
= 7] >
5%
: : L6028 4411
L R T R - S S S LT LI IET £
; T4
i B
{t0v80'eo)=12

US 11,309,061 B1

Sheet 15 of 19

Apr. 19, 2022

U.S. Patent

SIPUH

a6 am3ig

530N
Y Y vl

)
-

Aauarniey openy Huouss

A o s o o N A s

D6 231

SHPON

(393 910G BB

2

Aoup

dnpasdy

SIBOH
94

- G001

............ i 3 @O.UN

BT

pu0E 3

{s)a

- OO0
- 00%

0009

{8512 IS T)=p2

005

HEHS

st

-BO5E

{$720°0 ‘68’ E)=€2

US 11,309,061 B1

Sheet 16 of 19

Apr. 19,2022

U.S. Patent

46 23ty

Axuaniyd a1es Duosg

e s e

F.- *
* e o, 8 am o ; mﬁ
a3
R
sapaN -
Z
O
FED
&
L
3
. | A
U B : P «m.. g x.mm.a Mw
M.sz i Krnnennes w
e ES e g9E 3
oo, . l\u!\ﬂm
.y EL
8L
>
£
gL
L2

dﬂéeadS

S3pOM
2€

4161
- G001

- 3051

{sjoui

- GU0T

- (052

=+ 00K

{s'99°L "68°€}=99

F JO00L

1 000¢

HEH

{5660 ‘T'sl=5m

US 11,309,061 B1

Sheet 17 of 19

Apr. 19, 2022

U.S. Patent

H6 93y
3REOH SBPON SEPON
& 04 ve
______________ o
%
W\W N ww»ﬂ.w M
3 e 005
e
90 & @
% W - D001 ,mw,
G0 % s
o & - 0S4
2%
{5 '62'8¢ '9°1)=pe
D6 23]
SBEOR
E
; @
2
g - O00T
frey
By @ 3
o m -D00F
o
&
pev
2 - 0009
&4

{S ‘v5'61 ‘15 TI=L9

US 11,309,061 B1

Sheet 18 of 19

Apr. 19, 2022

U.S. Patent

SEPUN

T

6 2n81]

pEDIN

Kersuransn ;ﬁm;n:.l.. [A S S LI T

e

BTN

P
< o2

e
<

£2uB0L MEG BuosIs

¥

16 om31]

SBPON

& e

s s

Maersevarrarnasairnrarvaiyay

Taaw e nE

185 Buong

£ousnug o

dngaaly

SBEON
94 &

- 0302

(Saung

Ol0p

- 0005

be

SepON

{5 '80°1 '68°¢)=018

e

£
£
£
£
£
£
£
£
£
£
£

2
ot

- 8002

Slouly

{

o

- BO0C

o00p

{5 ‘5851 ‘s8°¢)=62

US 11,309,061 B1

Sheet 19 of 19

Apr. 19, 2022

U.S. Patent

16 2m31]
53PN
< 34 L 12
o0 : : : o
£D o 5
& 00?7
g § 2
bt LW
oy BAY
3 m 2R 007 3
Tt oy 2 z
2 Y oo
RN % g} e
2 %
e . Y s . L ooR
<l .
{5 'LyR'0 'R0E°Q)=21s
36 2m3rg
Sapon SBRON SBPON
e b 4 ; v -Z 72 g
w ol % 5 : o
WM\« L Qm.w
£0 5
A L (05
50 & 23 05L&
& - 300
R st
&
~ RG24
1 sl
{1 ‘€12 ‘85 1}=119

US 11,309,061 B1

1
SYSTEMS AND METHODS FOR PEPTIDE
IDENTIFICATION

GOVERNMENT SUPPORT

This invention was made with government support under
NSF CAREER OAC-1925960 awarded by National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND

Identification of peptides through database peptide search
technique requires searching several gigabytes of data
against several hundred gigabytes to a few terabytes of
database using resource (e.g., computational and memory)
intensive algorithms. Known high-performance computing
(HPC) techniques for database peptide search have been
designed as serial methods and thus do not scale with
problem size.

Database-search algorithms, that deduce peptides from
mass spectrometry (MS) data, have tried to improve the
computational efficiency to accomplish larger and more
complex systems biology studies. Existing serial, and high-
performance computing (HPC) search engines, otherwise
highly successful, are known to exhibit poor-scalability with
increasing size of theoretical search-space needed for
increased complexity of modern non-model, multi-species
MS-based omics analysis. Consequently, the bottleneck for
computational techniques is the communication costs of
moving the data between a hierarchy of memory, or pro-
cessing units, and not the arithmetic operations. This post-
Moore change in architecture and demands of modern
systems biology experiments have dampened the overall
effectiveness of the existing HPC workflows.

BRIEF SUMMARY

Embodiments of the subject invention provide systems
for rapid and efficient peptide identification from large-scale
mass spectrometry data through high performance comput-
ing database peptide search. The system can comprise a
symmetric multiprocessor supercomputer comprising a plu-
rality of processors and shared resources, the shared
resources comprising a shared memory storage in operable
communication with the plurality of processors; and at least
one (non-transitory) machine-readable medium in operable
communication with the plurality of processors, the at least
one machine-readable medium having instructions stored
thereon that, when executed by one or more of the plurality
of processors, perform the following supersteps: (a) provid-
ing a plurality of load balanced, indexed, peptide database
partitions (PDB) from a peptide database; (b) providing a
plurality of spectra, each spectra comprising a batch of
pre-processed mass spectrometry data from a mass spec-
trometry data set; (c) completing a partial database peptide
search of the plurality of spectra against the plurality of
PDBs to produce a plurality of intermediate results; and (d)
assembling, deserializing, and synchronizing the plurality of
intermediate results to form a complete result, and writing
the complete result to a file system, thus providing the rapid
and efficient peptide identification from large-scale mass
spectrometry data.

In an embodiment, the superstep (a) may comprise pep-
tide database clustering based on a Mod Distance (Am). The
Mod Distance (Am) may be given as:

10

15

20

25

30

35

40

45

50

55

60

65

a
Am(x, y) =2~ max(len(x), len(y))

for a pair of peptide database entries (X, y), where the sum
of unedited letters from both sequence termini is (a).

In certain embodiments, each of the plurality of proces-
sors may have a main memory locally connected, each of the
plurality of spectra provided in superstep (b) having a size
selected to fit within the main memory on one of the
plurality of processors.

In an embodiment, the partial database peptide search
may comprise the following steps:

(R) loading the plurality of spectra into a plurality of
forward queues (qf) in the shared memory storage;

(D reading the spectra from each respective forward
queue in the plurality of forward queues, recycling the
forward queue as a return queue (qr), searching the spectra
against the plurality of PDB to produce the plurality of
intermediate results, and writing the plurality of intermedi-
ate results to a plurality of intermediate queues (gk) in the
shared memory storage; and

(K) reading the intermediate results from each respective
intermediate queue in the plurality of intermediate queues,
recycling each intermediate queue as an intermediate return
queue (qk'), serializing the plurality of intermediate results
and writing the plurality of intermediate results to the shared
memory storage.

In an embodiment, the superstep (c) may comprise
actively allocating shared resources across steps (R), (I), and
(K) to optimize performance in a multi-threaded, multi-core,
shared memory, parallel process, producer-consumer pipe-
line. The system can comprise measurable performance
parameters, the performance parameters comprising: shared
memory per node (k), NUMA nodes per node (u), cores per
NUMA node (cu), number of sockets per node (s), cores per
socket (cs), estimated or actual total size of database (D),
total number of system nodes (P), number of MPI tasks per
node (tn), number of parallel cores per MPI task (tc), and
MPI task binding level (tbl); and superstep (c) comprising
determining allocation of shared resources based on one or
more of the performance parameters.

An embodiment provides the superstep (d) comprising a
first parallel sub-task comprising de-serialization and assem-
bly of the plurality of intermediate results, and a second
parallel sub-task comprising data smoothing and application
of a significance test to compute e-Values. The symmetric
multiprocessor supercomputer can comprise processing
cores allocated to tasks, the system comprising a step of
iteratively reducing the cores per task while increasing the
number of tasks until the PDB size per task reaches the
user-defined threshold, which may be set according to the
available RAM per node.

Embodiments also provide methods for rapid and efficient
peptide identification from large-scale mass spectrometry
data through high performance computing database peptide
search. The method can comprise providing a symmetric
multiprocessor supercomputer comprising a plurality of
processors and shared resources, the shared resources com-
prising a shared memory storage in operable communication
with the plurality of processors, and at least one machine-
readable medium in operable communication with the plu-
rality of processors; and performing the following super-
steps:

(a) providing a plurality of load balanced, indexed, pep-

tide database partitions (PDB) from a peptide database;

US 11,309,061 B1

3

(b) providing a plurality of spectra, each spectra compris-
ing a batch of pre-processed mass spectrometry data
from a mass spectrometry data set;

(c) completing a partial database peptide search of the
plurality of spectra against the plurality of PDBs to
produce a plurality of intermediate results; and

(d) assembling, deserializing, and synchronizing the plu-
rality of intermediate results to form a complete result,
and writing the complete result to a file system, thus
providing the rapid and efficient peptide identification
from large-scale mass spectrometry data.

Embodiments provide the superstep (a) comprising pep-

tide database clustering based on a Mod Distance (Am), the
Mod Distance (Am) is given as:

a
Amx,y)=2- max(len(x), len(y))

for a pair of peptide database entries (X, y), where the sum
of unedited letters from both sequence termini is (a).

In an embodiment, each of the plurality of processors can
have a main memory locally connected, and each of the
plurality of spectra provided in superstep (b) can have a size
selected to fit within the main memory on one of the
plurality of processors. The partial database peptide search
can comprise the following steps:

(R) loading the plurality of spectra into a plurality of
forward queues (qf) in the shared memory storage;

(I) reading the spectra from each respective forward
queue in the plurality of forward queues, recycling the
forward queue as a return queue (qr), searching the spectra
against the plurality of PDB to produce the plurality of
intermediate results, and writing the plurality of intermedi-
ate results to a plurality of intermediate queues (qk) in the
shared memory storage; and

(K) reading the intermediate results from each respective
intermediate queue in the plurality of intermediate queues,
recycling each intermediate queue as an intermediate return
queue (gk'), serializing the plurality of intermediate results
and writing the plurality of intermediate results to the shared
memory storage.

Embodiments provide the superstep (c) comprising
actively allocating shared resources across steps (R), (I), and
(K) to optimize performance in a multi-threaded, multi-core,
shared memory, parallel process, producer-consumer pipe-
line. The system can comprise measurable performance
parameters, the performance parameters comprising: shared
memory per node (k), NUMA nodes per node (u), cores per
NUMA node (cu), number of sockets per node (s), cores per
socket (cs), estimated or actual total size of database (D),
total number of system nodes (P), number of MPI tasks per
node (tn), number of parallel cores per MPI task (tc), and
MPI task binding level (tbl); and superstep (c) comprising
determining allocation of shared resources based on one or
more of the performance parameters.

The superstep (d) can comprise a first parallel sub-task
comprising de-serialization and assembly of the plurality of
intermediate results, and a second parallel sub-task com-
prising data smoothing and application of a significance test
to compute e-Values.

In an embodiment, a system for rapid and efficient peptide
identification from large-scale mass spectrometry data
through high performance computing database peptide
search can comprise a symmetric multiprocessor supercom-
puter comprising a plurality of processors and shared

10

15

20

25

30

35

40

45

50

55

60

65

4

resources, the shared resources comprising a shared memory
storage in operable communication with the plurality of
processors and at least one machine-readable medium in
operable communication with the plurality of processors, the
at least one machine-readable medium having instructions
stored thereon that, when executed by one or more of the
plurality of processors, perform the following supersteps:

(a) providing a plurality of load balanced, indexed, pep-
tide database partitions (PDB) from a peptide database;

(b) providing a plurality of spectra, each spectra compris-
ing a batch of pre-processed mass spectrometry data
from a mass spectrometry data set;

(c) completing a partial database peptide search of the
plurality of spectra against the plurality of PDBs to
produce a plurality of intermediate results; and

(d) assembling, deserializing, and synchronizing the plu-
rality of intermediate results to form a complete result,
and writing the complete result to a file system, thus
providing the rapid and efficient peptide identification
from large-scale mass spectrometry data;

the superstep (a) comprising peptide database clustering

based on a Mod Distance (Am), given as:

a
Am(x, y) =2~ max(len(x), len(y))

for a pair of peptide database entries (X, y), where the sum
of unedited letters from both sequence termini is (a); each of
the plurality of processors having a main memory locally
connected, and each of the plurality of spectra provided in
superstep (b) having a size selected to fit within the main
memory on one of the plurality of processors; the partial
database peptide search comprising the following steps:

(R) loading the plurality of spectra into a plurality of
forward queues (qf) in the shared memory storage;

(D reading the spectra from each respective forward
queue in the plurality of forward queues, recycling the
forward queue as a return queue (qr), searching the spectra
against the plurality of PDB to produce the plurality of
intermediate results, and writing the plurality of intermedi-
ate results to a plurality of intermediate queues (gk) in the
shared memory storage; and

(K) reading the intermediate results from each respective
intermediate queue in the plurality of intermediate queues,
recycling each intermediate queue as an intermediate return
queue (qk'), serializing the plurality of intermediate results
and writing the plurality of intermediate results to the shared
memory storage, and the superstep (¢) comprising actively
allocating shared resources across steps (R), (I), and (K) to
optimize performance in a multi-threaded, multi-core,
shared memory, parallel process, producer-consumer pipe-
line.

In an embodiment, the system can comprise measurable
performance parameters, the performance parameters com-
prising: shared memory per node (k); NUMA nodes per
node (u); cores per NUMA node (cu; number of sockets per
node (s); cores per socket (cs); estimated or actual total size
of database (D); total number of system nodes (P); number
of MPI tasks per node (tn); number of parallel cores per MPI
task (tc); and MPI task binding level (tbl). Superstep (c) can
comprise determining allocation of shared resources based
on one or more of the performance parameters. The super-
step (d) can comprise a first parallel sub-task comprising
de-serialization and assembly of the plurality of intermediate
results, and a second parallel sub-task comprising data

US 11,309,061 B1

5

smoothing and application of a significance test to compute
e-Values. The symmetric multiprocessor supercomputer can
comprise processing cores allocated to tasks, the system
comprising a step of iteratively reducing the cores per task
while increasing the number of tasks until the PDB size per
task reaches a defined threshold, the threshold being chosen
to optimize system performance of the symmetric multipro-
cessor supercomputer.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram representing a high-
performance computing database peptide search process,
according to an embodiment of the subject invention.

FIG. 2 is a schematic diagram representing a Workload
Profile, according to an embodiment of the subject inven-
tion.

FIGS. 3A-3C are a series of performance metric charts for
12 designed experiment sets labelled el through el2.

FIGS. 4A-4E are a series of performance metric charts for
12 designed experiment sets labelled el through el2.

FIG. 5 is a graphical representation of sampling interme-
diate results around the mean.

FIG. 6 is a schematic representation of a process to create
experimental spectra data.

FIG. 7 is a schematic representation of a process to extract
experimental spectra data from a pseudo-spectra database
derived from in-silico simulation of digestion of entries from
a protein sequence database by peptide sequences.

FIG. 8 is a schematic representation of improved LBE
method used in the superstep 1, which clusters the model-
spectra database entries (shown as shapes) using two dis-
tance metrics: Edit Distance (Ae) and Mod Distance (Am)
(Example 4).

FIGS. 9A-9L. are graphical representations of perfor-
mance metrics (time, speed improvement, and strong scale
efficiency) for experiment sets el through el2.

DETAILED DESCRIPTION

Embodiments of the subject invention provide novel
distributed design strategies for accelerating the database
peptide search workflows in high-performance computing
(HPC) environments. Systems of embodiments of the sub-
ject invention can be referred to as “HiCOPS” throughout
this disclosure. Embodiments are based on the Single Pro-
gram Multiple Data (SPMD) bulk synchronous parallel
(BSP) computational model and may build a task graph
using four asynchronous parallel supersteps. A runtime cost
model may be applied for performance analysis and opti-
mizations. Experimental results show more than 100x
improvement in speed over several existing shared-memory
and distributed-memory methods. HICOPS exhibits about
70-80% strong-scale efficiency for up to 72 parallel nodes
(1728 cores) of the National Science Foundation’s (NSF)
Extreme Science and Engineering Discovery Environment
(XSEDE) Comet cluster operated by the San Diego Super-
computing Center (SDSC). The results further show appli-
cation in extremely large-scale experiments by showing that
embodiments may search several gigabytes of data against
terabyte level databases in few minutes compared to 35.5
days required by MSFragger (Kong et al., A. 1., 2017,
MSFragger: ultrafast and comprehensive peptide identifica-
tion in mass spectrometrybased proteomics, Nature Meth-
ods, 14(5), 513-520; which is hereby incorporated herein by
reference in its entirety), a widely used tool. A comprehen-
sive performance evaluation revealed desirable results for

10

15

20

25

30

35

40

45

50

55

60

65

6

several metrics including load balance, communication and
1/O overheads, task scheduling and CPU utilization.

Embodiments provide a novel distributed design strategy,
called HiCOPS, for accelerating the database peptide search
workflows in HPC environments such as XSEDE and
National Energy Research and Scientific Computing Center
(NERSC) Cori supercomputers.

In extremely large-scale experiments, embodiments have
been shown to search several gigabytes of experimental data
against terabyte level databases in few minutes compared to
35.5 days required by MSFragger (a widely used search
tool). Comprehensive performance evaluation revealed opti-
mal results for several metrics including load balance
(<10%), communication and /O overheads (<10%), task
scheduling (<5%) and CPU utilization (super linear for large
experiments).

Embodiments can easily incorporate several existing
serial algorithms and workflows for acceleration in HPC
environments. Embodiments may implement parallel ver-
sions of many algorithms and data structures that can serve
as building blocks for implementation of novel algorithms
on top of a parallel core design.

The computational model employed in certain embodi-
ments is a Single Program Multiple Data (SPMD) Bulk
Synchronous Parallel (BSP) model where a set of processes
execute (e.g., K) supersteps in asynchronous parallel fashion
and synchronize between supersteps.

Embodiments may construct the parallel database peptide
search algorithmic workflow (task-graph) using four super-
steps:

1. In the first superstep, the massive model-spectra data-
base is partitioned across parallel processes in a load bal-
anced fashion (data parallel).

2. In the second superstep, the experimental data are
divided into batches and pre-processed if required (data
parallel).

3. In the third superstep, the parallel processes search
batches of pre-processed experimental data against their
partial databases, producing intermediate results (hybrid
task and data parallel).

4. In the final superstep, the intermediate results are
assembled into complete or global results and the statistical
significance scores are computed (hybrid task and data
parallel).

A runtime cost model for a superstep may count the time
for any superstep as the maximum time that a process spends
to complete that superstep in cases where the computational
model is based on the SPMD parallel design.

1. Data Parallel supersteps:

Tj=max(T7, 1,72, Tjp)

where Tj,p=kl(problem size)+k2(problem size)+ . . .

where ki are the algorithmic steps performed in data
parallel fashion by the p” process in superstep j.

2. Hybrid supersteps

Tj=max(T7, 1,72, Tjp)

where Tj,p=max (kl(problem size, resources)+k2(prob-
lem size, resources))+ . . .

where ki are the algorithmic steps performed in task
parallel fashion by the p” process using some resources in
superstep j.

The runtime costs for each superstep along with possible
overhead costs in each superstep may be added and catego-
rized into three categories: Serial Time (Ts), Parallel Time
(Tp) and Overhead Time (To).

US 11,309,061 B1

7

The parallel and overhead times (Tp+To) may be further
analyzed to look for optimizable algorithmic tasks and the
root causes of the overhead costs to design and implement
several optimization techniques that minimize the overhead
costs and boost the parallel terms for improved performance.
The serial time (Ts) may be pruned out of the optimization
in cases where serial optimization potential is low. The
optimization techniques implemented may include Data
Buffering, Task Scheduling, Sampling, and L.oad Balancing.

Data Buffering optimization may account for minor speed
mismatch between parallel subtasks in hybrid task and data
parallel supersteps (e.g., supersteps 3 and 4). Data flow
between parallel sub-tasks is implemented via buffers to
allow for producer tasks and consumer tasks to keep work-
ing without waiting. The data buffers may be recycled to
avoid memory fragmentation.

Task Scheduling optimization may improve dynamic con-
trol of resources allocated to parallel sub-tasks in hybrid task
and data parallel supersteps (e.g., superstep 3). A double
exponential smoothing based forecast-based task scheduling
algorithm may forecast speed mismatches between producer
sub-tasks and consumer sub-tasks and then re-allocate avail-
able CPU resources among them to improve performance.

Sampling optimization may minimize the data I/O and
communication between parallel processes of HiCOPS. A
sampling technique may reduce the footprint of the partial
result data computed at each parallel process, before being
accumulated (e.g., in superstep 4.)

Load Balancing optimization may improve on an already
existing load balancing algorithm for database partitioning,
(e.g., as described in Haseeb et al., LBE: A computational
load balancing algorithm for speeding up parallel peptide
search in mass-spectrometry based proteomics, In 2019
IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 191-198, IEEE, 2019,
which is hereby incorporated by reference herein in its
entirety) and use the improved algorithm to implement load
balancing between the parallel HICOPS tasks in a static
manner.

An embodiment of HiCOPS has been implemented using
C++ 14, Python, and Bash. Instrumentation is in-built using
Timemory framework for performance analysis and optimi-
zations.

Several other optimization techniques and the algorithms
pertinent to each superstep are described below. Additional
optimization techniques and the algorithms pertinent to
various aspects of HICOPS may be employed by one of
ordinary skill in the art. A task-mapping algorithm that may
construct and map the parallel HICOPS Message Passing
Interface (MPI) processes on to the distributed memory
cluster is also discussed below.

For comparison, related art Naive Approaches to HPC
database peptide search methods follow an inherently serial
design where they may replicate the shared memory work-
flow on a distributed memory system. This may entail
replication of the entire database (which may be between
hundreds of GB to a few TBs in size) on each parallel node
in the system. The experimental data may then also be split
between the parallel instances (replicating the entire serial
workflow). This deign can be simply viewed as running the
original software on a set of computers, with a sub-set of the
experimental data—without taking any advantage of the
underlying distributed memory system itself.

Embodiments of the subject invention completely over-
haul the design and beneficially make use of the distributed
memory and a higher memory bandwidth available on these
architectures by splitting the workload between parallel

10

15

20

25

30

35

40

45

50

55

60

65

8

nodes (split the massive database and relevant data struc-
tures), performing partial computations much faster and
merging in an advantageous way that minimizes impact to
the overall system performance.

Embodiments have been measured to provide more than
100x improvement compared to many existing shared and
distributed memory tools, especially when the dataset and
database are big (e.g., database is larger than 50 million
peptides and/or dataset is larger than 1 million spectra).

Performing extreme scale peptide identification experi-
ments at ultra-fast speeds, it has been demonstrated that
embodiments are capable of searching gigabytes of experi-
mental data against hundreds of gigabytes to terabytes of
database content in a few minutes, whereas existing tools
may require days or weeks to complete the same search.
Embodiments are generic and may be adapted to additional
existing tools and workflows through a re-design to achieve
ultra-fast speeds similar to results presented herein.

The software framework of the subject invention may
implement parallel versions of many algorithms and data
structures that can serve as building blocks for implemen-
tation of novel algorithms on top of the parallel core design.

Proteomics and systems biology experiments and discov-
eries may use the subject invention to speed up their
analyses and research. Data used in the experiments pre-
sented herein was obtained from: UniProt (uniprot.org) and
Pride Archive (www.ebi.ac.uk/pride/archive/), both of
which are public data repositories where the data are avail-
able under no agreements, and both of which are hereby
incorporated by reference herein in their respective entire-
ties.

In one embodiment, less than 0.5% of required source
code was modified and used from public GitHub repositories
under open source licenses (e.g., MIT or GPL). The original
license and author information was maintained intact in the
relevant source code files.

Also utilized were freely available open source resources
including the C++ standard library, OpenMP, MPI, CMake
and Timemory libraries and Python packages (e.g., numpy,
matplotlib etc.). It is contemplated within the scope of the
invention to incorporate additional C++ and Python libraries
(e.g., Boost, LAPACK, Kokkos, UPC++, Pybindll,
MPI4Py, etc.) in future development.

Also used was the MSconvert tool (hub.docker.com/r/
chambm/pwiz-skyline-i-agree-to-the-vendor-licenses)
wrapped in a custom Bash based tool to convert experimen-
tal data into specific formats. Users may use the MSconvert
tool directly to do so. The custom Bash based tool of the
subject invention beneficially automates the process to
enhance usability and efficiency. All tools, packages, librar-
ies, data sources, databases, data structures, or other utilities
or accessories used with or incorporated into HICOPS or any
embodiment (e.g., opensource, free, or unlicensed) through-
out this disclosure are hereby incorporated by reference
herein in their respective entireties.

Embodiments provide novel efficient parallel computa-
tional methods, and their implementation on memory-dis-
tributed architectures for peptide identification tool called
HiCOPS, that enable more than 100-fold improvement in
speed over most existing HPC proteome database search
tools. HiCOPS empowers the supercomputing database
search concept for comprehensive identification of peptides,
and all their modified forms within a reasonable time frame.
Searching Gigabytes of experimental MS data against Tera-
bytes of databases, HICOPS completes peptide identification
in few minutes using 72 parallel nodes (1728 cores) com-
pared to several weeks required by existing state-of-the-art

US 11,309,061 B1

9

tools using 1 node (24 cores); 100 minutes vs 5 weeks=500x
improvement in speed. Also provided is a theoretical frame-
work for an overhead-avoiding strategy, and superior per-
formance evaluation results for key metrics including execu-
tion time, CPU utilization, improvement in speed, and I/O
efficiency. Embodiments demonstrate superior performance
as compared to all existing HPC strategies.

Faster and more efficient peptide identification algorithms
have been the cornerstone of computational research in
shotgun MS based proteomics for more than 30 years.
Millions of raw, noisy spectra can be produced in a span of
few hours, using modern mass spectrometry technologies
producing several gigabytes of data (e.g., FIG. 6). Database
peptide search is the most commonly employed computa-
tional approach to identify the peptides from the experimen-
tal spectra. In this approach, the experimental spectra are
searched against a database of model-spectra (or theoretical-
spectra) with the goal to find the best possible matches. The
model-spectra database is simulated through in-silico tech-
niques using a proteome sequence database (FIG. 7). The
model-spectra database can grow exponentially in space
(e.g., several gigabytes to terabytes) as the post-translational
modifications (PTMs) are incorporated in simulation. There-
fore, the cost of moving and managing this data to match
with the spectra now exceeds the costs of doing the arith-
metic operations in these search engines leading to non-
scalable workflows with increasingly larger and complex
data sets.

As demonstrated by other big data fields, such limitations
can be reduced by developing parallel algorithms that com-
bine the computational power of thousands of processing
elements across distributed-memory clusters, and supercom-
puters. HPC techniques for processing of MS data can be
used for multicore and distributed-memory architectures.
Similar to serial algorithms, the objective of these HPC
methods has been to speed up the arithmetic scoring part of
the search engines, by spawning multiple (managed)
instances of the original code, replicating the theoretical
database, and splitting the experimental data. However,
computationally optimal HPC algorithms that minimize
both the computational and communications costs for these
tasks are still needed. Urgent need for developing methods
that exhibit optimal performance has been illustrated in
theoretical frameworks (e.g., Saeed, Communication lower-
bounds for distributed-memory computations for mass spec-
trometry based omics data, arXiv preprint arXiv:2009,
14123, 2020, which is hereby incorporated by reference
herein in its entirety), and can potentially lead to large-scale
systems biology studies especially for meta-proteomics,
proteogenomic, and MS based microbiome or non-model
organisms’ studies having direct impact on personalized
nutrition, microbiome research, and cancer therapeutics.

In order to develop faster strategies applicable to MS
based omics data analysis, embodiments provide novel HPC
frameworks that provide orders-of-magnitude faster pro-
cessing over both serial and parallel tools. Also provided is
a new HPC tool, capable of scaling on large (distributed)
symmetric multiprocessor (SMP) supercomputers. HICOPS
makes searches possible (e.g., completing in a few minutes)
even for terabyte level theoretical database(s); something
not feasible (e.g., requiring several weeks of computations)
with existing state-of-the-art methods. HICOPS’s utility has
been demonstrated in both closed- and open-searches across
different search-parameters, and experimental conditions.
Further, experimental results depict more than 100x
improvement in speed for HiCOPS compared to several
existing shared and distributed memory database peptide

10

15

20

25

30

35

40

45

50

55

60

65

10

search tools. Embodiments may utilize an overhead-avoid-
ing strategy that splits the database (algorithmic workload)
among the parallel processes in a load balanced fashion,
executes the partial database peptide search, and merges the
results in communication optimal way, alleviating the
resource upper bounds that exist in existing database peptide
search tools.

Results have been demonstrated on several data- and
compute-intensive experimental conditions including using
4 TB of theoretical database against which millions of
spectra were matched. HICOPS, even when using similar
scoring functions, outperforms both parallel and serial meth-
ods. In one example an embodiment searching 41 GB of
experimental spectra against a database size of 1.8 TB ran in
only 103.5 minutes using 72 parallel nodes compared to
MSFragger which took about 35.5 days to complete the
same experiment on 1 node (494x slower). HICOPS com-
pleted an open-search (dataset size: 8K spectra, database
size: 93.5M spectra) in 144 seconds as compared to the X!!
Tandem (33 minutes) and SW-Tandem (4.2 hours), all using
64 parallel nodes; demonstrating that HiCOPS may out-
perform existing parallel tools. In another example 12 dif-
ferent experiment sets were used to demonstrate the perfor-
mance of an embodiment of a parallel computing framework
of the subject invention using metrics such as parallel
efficiency: 70-80%, load imbalance cost: <10%, CPU utili-
zation: improved with parallel nodes, communication costs:
=10%, /O costs: =5% and task scheduling related costs:
=5%; to demonstrate superior performance as compared to
existing serial or parallel solutions. Embodiments are not
limited to data from a particular MS instrument. Embodi-
ments allow searches on multiple model species databases
and can be incorporated into existing data analysis pipelines.
Embodiments provide the first software pipeline capable of
efficiently scaling to the terabyte-scale workflows using
large number of parallel nodes (e.g., in a database peptide
search domain.)

Results

HiCOPS constructs the parallel database peptide search
algorithmic workflow (task-graph) using four Single Pro-
gram Multiple Data (SPMD) Bulk Synchronous Parallel
(BSP) supersteps (e.g., as disclosed in Valiant, A bridging
model for parallel computation, Communications of the
ACM, 33(8):103-111, 1990, which is hereby incorporated
by reference herein in its entirety); where a set of processes
(pi E P) execute (@) supersteps in asynchronous parallel
fashion and synchronize between them. As shown in FIG. 1,
an embodiment may allow searching of a partial theoretical
database in parallel; something that has not been accom-
plished in the context of existing peptide database-search
tools. These partial search-results are then merged using a
communication-optimal technique.

In the first superstep, the massive model-spectra database
is partitioned across parallel processes in a load balanced
fashion. In the second superstep, the experimental data are
divided into batches and pre-processed if required. In the
third superstep, the parallel processes execute a partial
database peptide search on the pre-processed experimental
data batches, producing intermediate results. In the final
superstep, these intermediate results are de-serialized and
assembled into complete (e.g., global) results. The statistical
significance scores are computed (Online Methods, FIG. 1)
using global results. FIG. 2 gives an overview of the
parallelization scheme, task-graph, and workload profile for
each of the supersteps (Online Methods).

The total wall time (T,,) for executing the four supersteps
is the sum of superstep execution times, given as:

Ty=T\+1+T5+T,

US 11,309,061 B1

11

Where the execution time for a superstep (j) is the
maximum time required by any parallel task (p,£ P) to
complete that superstep, given as:

Or simply:

Tymax,(7T},,)

JPi

Combining the above three equations, the total HICOPS
runtime is given as:

.)
Ty =y max,, (T}, p;)
=

Experimental Setup

The following datasets from Pride Archive were used for
experimentation and evaluation purposes.

E,: PXD009072 (0.305 million spectra)

E,: PXD020590 (1.6 million spectra)

E;: PXD015890 (3.8 million spectra)

E,: PXD007871, 009072, 010023, 012463, 013074,
013332, 014802, and 015391 combined (1.515 million
spectra)

Es: All above datasets combined (6.92 million spectra)

The search experiments were conducted against the fol-
lowing protein sequence databases. The databases were
digested in-silico using Trypsin as enzyme with 2 allowed
missed cleavages, peptide lengths between 6 and 46 and
peptide masses between 500 and 5000 Da. The number and
type of PTMs added to the database, and the peptide
precursor mass tolerance (M) were varied across experi-
ments however, the fragment mass tolerance (dF) was set to
+0.005 Da in all experiments.

D,: UniProt Homo sapiens (UP005640)

D,: UniProt SwissProt (reviewed, multi-species)

Twelve di[Jerent experiments were designed using com-
binations of the above-mentioned databases, datasets and
experimental parameters for an extensive performance
evaluation. These experiments exhibit varying experimental
workloads to cover a wide range of real-world scenarios.
Each of these experiment sets is represented using a tuple:
en=(q, D, M) where q is dataset size in 1 million spectra,
D is model-spectra database size in 100 million spectra and
OM peptide precursor mass setting in £100 Da to represent
the problem size. The designed experiment sets (of varying
workloads) are listed as: e1=(0.3, 0.84, 0.1), ¢2=(0.3, 0.84,
2), €3=(3.89, 0.07, 5), e4=(1.51, 2.13, 5), e5=(6.1, 0.93, 5),
e6=(3.89, 7.66, 5), e7=(1.51, 19.54, 5), e8=(1.6, 38.89, 5),
€9=(3.89, 15.85, 5), e10=(3.89, 1.08, 5), e11=(1.58, 2.13, 1),
and e12=(0.305, 0.847, 5).

Runtime Environment: All distributed memory tools were
run on the Extreme Science and Engineering Discovery
Environment (XSEDE) (Towns et al., Xsede: accelerating
scientific discovery, Computing in Science & Engineering,
16(5):62-74, 2014, which is hereby incorporated by refer-
ence herein in its entirety), Comet cluster at the San Diego
Supercomputer Center (SDSC). All Comet compute nodes
are equipped with 2 socketsx12 cores of Intel Xeon
E5-2680v3 processor, 2 NUMA nodesx64 GB DRAM, 56
Gbps FDR InfiniBand interconnect and Lustre shared file
system. The maximum number of nodes allowed per job is

10

15

20

25

30

35

40

45

50

55

60

65

12

72 and maximum allowed job time is 48 hours. The shared
memory tools, on the other hand, were run on a local server
system equipped with an Intel Xeon Gold 6152 processor
(22 physical cores, 44 hardware threads), 128 GB DRAM
and a local 6 TB SSD storage as most experiments using the
shared memory tools required >48 hours (job time limit on
XSEDE Comet).

Correctness of the parallel design was evaluated by
searching all five datasets E, against both protein sequence
databases Di under various settings, and combinations of
PTMs. The correctness was evaluated in terms of consis-
tency in the number of database hits, the identified peptide
to spectrum matches (PSM), and the hyper-scores and
e-values assigned to those sequences (within 3 decimal
points) for each experimental spectrum searched. The
experiments were performed using combinations of experi-
mental settings wherein were observed more than 99.5%
consistent results regard-less of the number of parallel
nodes. The negative error in expected values results
observed in erroneous identifications was caused by the
sampling, and floating-point precision losses (Online Meth-
ods, FIGS. 5 and 1D). A snippet of the 251,501 peptide to
spectrum match (PSM) results obtained by searching the
dataset: E; against the database: D, with no post-transla-
tional modifications added at precursor mass tolerance:
dM=+500 Da is shown in Table 1.

TABLE 1
A snippet of the peptide-to-speactrum matches
(PSMs) and e-values obtained by searching the dataset:
E, against database: D; (no mods, M = 500 Da).
Full table can be requested from the corresponding author.

Matched e-Values for Parallel nodes
Peptide 1 2 4,8 16, 32 64
HLTYENVER 6.6e-5 6.5e-5 6.5e-5 6.5e-5 6.5.e-5
SEGESSRSVR 3.175e-3 3.174e-3 3.174e-3 3.175e-3 3.174e-3
IFQCNKHMK 0.037038 0.037037 0.037037 0.037036 0.037037
FIVSKNK 0.113302 0.113301 0.113298 0.113297 0.113297
QQIVSGR 1.294027 1.293975 1.293975 1.293975 1.293975
STVASMMHR 2.641636 2.64151 2.64151 2.64151 2.64151
TLFKSSLK 7.000016 7.0 7.0 7.0 7.0
QKQLLKEQK 16.856401 invalid 16.855967 invalid

Comparative analysis reveals orders of magnitude

improvement in speed, comparing the HiCOPS speed
against many existing shared and distributed memory par-
allel database peptide search algorithms including: MSFrag-
ger v3.0 (Kong et al., Msfragger: ultrafast and comprehen-
sive peptide identification in mass spectrometry-based
proteomics, Nature Methods, 14(5):513, 2017; which is
hereby incorporated by reference herein in its entirety);

X! Tandem v17.2.1 (Craig et al., Tandem: matching
proteins with tandem mass spectra, Bioinformatics, 20(9):
1466-1467, 2004), which is hereby incorporated by refer-
ence herein in its entirety;

Tide/Crux v3.2 (Mcllwain et al., Crux: rapid open source
protein tandem mass spectrometry analysis, Journal of pro-
teome research, 13(10):4488-4491, 2014; which is hereby
incorporated by reference herein in its entirety);

X!t Tandem v10.12.1 (Bjornson et al., X!! tandem, an
improved method for running x! tandem in parallel on
collections of commodity computers, The Journal of Pro-
teome Research, 7(1):293-299, 2007; which is hereby incor-
porated by reference herein in its entirety); and

SW-Tandem (Li et al., Mctandem: an efficient tool for
large-scale peptide identification on many integrated core

US 11,309,061 B1

13

(mic) architecture, BMC bioinformatics (Oxford, England)
2019; which is hereby incorporated by reference herein in its
entirety).

In the first experiment set, a subset of 8,000 spectra (file:
7 Sep. 2018 Olson WT24) from dataset: E, was searched
against the database: D,. Fixed Cysteine Carbamidometh-
ylation, and variable Methionine oxidation, and Tyrosine
Biotin-tyramide were added yielding model-spectra data-
base of 93.5 million (~90 GB). In the second experiment set,
the entire dataset: E; was searched against the same database
D,. The peptide precursor mass tolerance was in both sets
was first set to: 3M=x10 Da and then +500 Da (100 Da for
Tide/Crux). The obtained wall time results (e.g., Tables 2, 3,
4, 5) show that HICOPS outperforms both the shared and
distributed memory tools (in speed) by >100x when the
experiment size is large.

For instance, as seen in the tables above for the second
experiment, HICOPS outperforms both the X!!Tandem and
SW-Tandem by >800x (230 seconds v >2 days) using 64
nodes. HICOPS also depicts improvements in speed of
67.3x and 350x versus MSFragger (1 node) for the same
experiment set. Furthermore, no improvements in speed
were observed for SW-Tandem with increasing number of
parallel nodes (no parallel efficiency). Repeated efforts were
made to contact the corresponding authors about the parallel
efficiency issue but no response was received prior to
drafting of this specification (See, e.g., Example 6).

TABLE 2

Speed comparison between existing tools and HiCOPS for the
experiment la, dataset size: 8 K, database size: 93.5 M,
precursor mass tolerance: 6M = 10.0 DA.

Search Execution Time (s) for parallel nodes
Tool 1 2 4 8 16
HiCOPS — 166.32 126.35 113.53 134.86
X! Tandem 4980 2445 1279.8 690 360
SW-Tandem 1015 992 1002 999 1019
MSFragger 299.4 —
X!Tandem 957 —
Crux/Tide 2470 —

TABLE 3

Speed comparison between existing tools and HiCOPS for the
experiment 1b, dataset size: 8K, database size: 93.5M,

precursor mass tolerance: 6M = 500.0Da ...}

Execution Time (s) for parallel nodes

Search Tool 1 2 4 8 16 32 64

HiCOPS — 188 135 115 101 101 144

X!!Tandem 115K 57.7K 29.05K 14.6K 7.4K 3.72K 1.98K
SW-Tandem 19.99K 17.1K 154K 143K 151K 15K 15K
MSFragger 521 —

X!Tandem 18.65K —

Crux/Tide segmentation fault

The application of HICOPS in extremely resource inten-
sive experimental settings (e.g., large-scale peptide identi-
fication) was demonstrated using additional experiments
where the datasets: E;, E, and E, were searched against
model-spectra databases of sizes: 766M (780 GB), 1.59B
(1.7 TB) and 3.88B (4 TB) respectively (dM=x500 Da).
HiCOPS completed the execution of these experiments
using 64 parallel nodes (1538 cores) in 14.55 minutes, 103.5

w

20

25

30

35

40

45

50

60

65

14

minutes, and 27.3 minutes, respectively. To compare, the
second experiment (dataset: E, and database size: 1.59B (1.7
TB)) was searched on MSFragger which completed after
35.5 days making HiCOPS 494x faster. The rest of the
experiments were intentionally not run using any other tools
but HiCOPS to avoid feasibility issues as each tool would
require several months of processing to complete each
experiment, as evident from Tables 3, 4, 5. The wall clock
execution time results for this set of experiments are sum-
marized in the Table 6.

TABLE 4

Speed comparison between HiCOPS and existing tools for the
experiment 2a, dataset size: 3.8M, database size: 93.5M, precursor
mass tolerance: M = 10.0 Da. X!!Tandem and SW-Tandem ran for 2 days
in all parallel configurations but failed to complete and were terminated
by SLURM due to max job time limit on XSEDE Comet system.

Search Execution Time (s) for parallel nodes

Tool 1 2 4 8 18
HiCOPS — 557.549 371.585 262.16 213.622
X! Tandem terminated after 2 days

SW-Tandem terminated after 2 days

MSFragger 13402.66 —

X!Tandem 1.71M —

Crux/Tide 875.5K —

TABLE 5

Speed comparison between HiCOPS and existing tools for the
experiment 2b, dataset size: 3 database size: 93.5M, precursor

mass tolerance: M = 500.0Da:-. . X!!Tandem and SW-Tandem ran
for 2 days in all parallel configurations but failed to complete and
were terminated by SLURM due to max job time limit on XSEDE
Comet system. X!Tandem has been running for 75 days at the time
of submission of this manuscript and is expected to run over
8 months to complete its execution.

Execution Time (s) for parallel nodes

Search Tool 1 2 4 8 16 32 64
HIiCOPS — 235K 66K 2.8K 14K 807 485
X! Tandem terminated after 2 days

SW-Tandem terminated after 2 days
MSFragger 170.1K —
X!Tandem 75 days* —
Crux/Tide segmentation fault

HiCOPS exhibits efficient strong-scale improvements in
speed. The improvement in speed and strong scale efficiency
for the overall and superstep-by-superstep runtime was
measured for all 12 experiment sets. The results (FIGS. 9,
3A, and 3B) depict that the overall strong scale efficiency
closely follows the superstep 3 (evident in FIG. 9) and
ranges between 70-80% for sufficiently large experimental
workload. Super-linear improvements in speed were also
observed in many experiments with higher workloads. The
following hardware counters-based metrics were also
recorded for all experiment sets: instructions per cycle (ipc),
last level cache misses per all cache level misses (Ipc), and
the cycles stalled due to writes per total stalled cycles (wps).
The results (FIG. 3C) show that the CPU, cache, and
memory bandwidth utilization improves as the workload per
node (wi/P) increases reaching to an optimum point after
which it saturates due to memory bandwidth contention
since the database search algorithms employed (and also in
general) are highly memory intensive. Beyond this satura-

US 11,309,061 B1

15

tion point, increasing the number of parallel nodes for the
same experimental workload resulted in a substantial
improvement (super-linear) in performance as the workload
per node (wi/P) reduced to the normal (optimal) range. For
instance, the experiment set e5 depicts super-linear improve-
ments in speed (FIG. 3A) which can be correlated to the
hardware performance surge in FIG. 3C. Performance evalu-
ation reveals minimal overhead costs where HiCOPS
searches a variety of high intensity workload test data sets.
The load imbalance, communication, I/O, and task sched-
uling costs were measured for all experiments (12 designed
experiment sets.) The obtained results (FIGS. 4A-4C) depict
that the load imbalance costs remain <10%, communication
costs remain =5%, 1/O costs remain =10% in most experi-
ments. Load imbalance may be interpreted as a direct
measure of synchronization cost. The task-scheduling cost
was measured through a time series (twait) (FI1G. 4E) which
monitors the time that the parallel cores had to wait for the
data /O to complete. The results (FIG. 4E) depict that the
task-scheduling algorithm actively performs counter mea-
sures (reallocates threads) as soon as a surge in wait-time is
detected keeping the cost to =5% in most experiments (FIG.
4D). It was also observed that the /O cost is affected by a
number of factors including average dataset file size, number
of files in the dataset and the available file system band-
width. The communication cost is a(Jected by the available
network bandwidth.

Enormous possibilities of chemical and biological modi-
fications add knowledge discovery dimensions to mass
spectrometry-based omics but are not explored in most
studies, in part, due to the scalability challenges associated
with comprehensive PTM searches. Related art MS based
computational proteomics algorithms, both serial and par-
allel, have focused on improving arithmetic computations by
introducing indexing and approximation methods to speed
up their workflows. However recent trends in the workloads
stemming from systems biology (e.g. meta-proteomics, pro-
teogenomics) experiments point towards urgent need for
computational tools capable of efficiently harnessing the
compute and memory resources from supercomputers. The
highly scalable and low-overhead strategy, HICOPS, meets
this urgent need for next generation of computational solu-
tions leading to more comprehensive peptide identification
application. Further, this HPC framework can be adapted for
accelerating most existing modern database peptide search
algorithms.

TABLE 6

Experimental wall times for large-scale peptide
identification experiments using HiCOPS and MSFragger.
Exp. 1: (DB: 766M, DS:3.8 M, 6M = 500Da),

Exp. 2: (DB: 1.6B, DS: 1.5M, 8M = 500Da),

Exp. 3: (DB: 3.88B, DS: 1.6M, 8M = 500Da).

The experiments were not performed using
other tools due to their relatively slower speeds requiring

several months of processing per tool per experiment.
Exp. Dataset Database Time
Num Tool Nodes (GB) (GB) (min)
1 HiCOPS 64 20 780 14.55
2 HiCOPS 64 15 1692 103.5
3 MSFragger 1 15 1692 51130
3 HiCOPS 64 41 4000 27.3

Embodiments are demonstrated using novel experiments,
peptide deduction through searching gigabytes of experi-
mental tandem MS (MS/MS) data against terabytes of
model-spectra databases in only a few minutes compared to

10

15

20

25

30

35

40

45

50

55

60

16

several days required by modern tools (100 minutes vs 5
weeks; 500x improvement in speed using 72 parallel nodes).
The overhead-avoiding BSP-model based parallel algorith-
mic design allows efficient exploitation of extreme-scale
resources available in modern high-performance computing
architectures, and supercomputers. Extensive performance
evaluation using over two dozen experiment sets with vari-
able problem size (database and dataset sizes) and experi-
mental settings revealed superior strong scale parallel effi-
ciency, and minimal overhead costs for HiCOPS. The
provided novel HPC framework gives systems biologist a
tool to perform comprehensive modification searches for
meta-proteomics, proteogenomic, and proteomics studies
for non-model organisms at scale. HICOPS is under direct
development and contemplates improved /O efficiency,
load balancing, reduced overhead costs, and the parallel
design for heterogeneous and CPU-GPU architectures in
future versions. The peptide search strategy (both open- and
closed) for comprehensive PTM’s, made practical by
HiCOPS, has the potential to become a valuable option for
scalable analysis of shotgun Mass Spectrometry based
omics.

Turning now to the figures, FIG. 1 is a schematic diagram
representing a high-performance computing database pep-
tide search process in accordance with an embodiment of the
subject invention. The process may be represented as four
Supersteps shown in panels a, b, ¢, and d of FIG. 1 with
arrows representing data flow between the Supersteps. In
panel (a) Superstep 1: The massive model-spectra database
(shown as shapes) is partitioned among parallel MPI pro-
cesses in load balanced manner and then locally indexed. In
panel (b) Superstep 2: The experimental MS/MS spectra
data are split, indexed, tagged, pre-processed and written
back to the file system in parallel. In panel (c) Superstep 3:
The partial database peptide search pipeline executed by all
parallel processes is shown. On each process, three parallel
sub-tasks R, I and K work in producer-consumer pipeline to
load the pre-processed data, execute the partial database
search producing partial results, and write the (sampled)
results to the shared memory respectively. The available
threads are managed between parallel sub-tasks through a
task scheduling algorithm. The sub-tasks communicate via
buffer queues to avoid fragmentation. (d) Superstep 4: The
partial results are assembled into complete results to com-
pute statistical scores which are communicated to their
origin processes. A Legend panel defines markers for par-
allel process, parallel sub-task, thread, compute, 1/O, com-
munications, parallel processing, and control elements
throughout FIG. 1.

Embodiments partition large databases into small but
identical partitions that are processed on parallel nodes (e.g.,
the data in each partition, while not identical or directly
replicated, would roughly look similar). By way of analogy,
assume a set of 10 pizzas all with different toppings and
sauces. In order to partition the database of pizzas among 5
people, each partition can have a Y5th sized pizza slice from
each of the 10 pizzas; this way all partitions will have more
or less a similar amount and kind of toppings.

FIG. 2 is a schematic diagram representing a Workload
Profile in accordance with an embodiment of the subject
invention. Each row (e.g., as indicated by the riw index/
counters 1, . . .1, . . . p within the filled-circles) processes
independently through all Supersteps (s1, s2, s3, s4) in a
horizontal fashion except where communication between
rows is indicated by vertical arrows. Embodiments may
provide any number up to p rows (e.g., i=1, 2,3, . . ., p;
where p is a positive integer) depending on the size of the

US 11,309,061 B1

17

data and available resources. Supersteps sl and s2 are
designed as data parallel. Supersteps s3 and s4 are designed
as hybrid task and data parallel. The workload executed by
the four respective supersteps are (s1) compute intensive,
(s2) I/O intensive, (s3) mixed (compute and I/O), and (s4)
mixed (compute and comm.), respectively. In the last two
supersteps, the compute workload may supersede the com-
munication and/or I/O, given that the associated overhead
costs are overlapped or minimized. A Legend below the
schematic defines markers for data parallel threads, compute
intensive, I/O intensive, communication intensive, 1/O
operations, parallel sub-task, intra-process communication,
and inter-process communications elements throughout FIG.
2.

FIGS. 3A-3C are a series of performance metric charts for
12 designed experiment sets labeled el through el2. In
FIGS. 3A and 3B a reference experiment set is also shown.
In FIG. 3A the reference experiment set shows a 1-to-1
speed improvement per additional Node. In FIG. 3B the
reference experiment set shows an efficiency of 1.0 across
all Nodes. In FIG. 3A the speed improves (improvement in
speed may be denoted as “speedup” on the y-axis legend in
this figure and throughout the specification) as the experi-
mental workload increases ranging between 70-80% for
most experiment sets. In FIG. 3B the parallel efficiency
improves as the experimental workload increases ranging
between 70-80% for most experiment sets. In FIG. 3C the
hardware utilization metrics show an improved performance
per node trend for large workloads as the number of parallel
nodes increase resulting in super-linear improvements in
speed (e.g., e5).

FIGS. 4A-4E are a series of performance metric charts for
12 designed experiment sets labelled el through e12. In FIG.
4A the load imbalance overhead costs remain under 10% in
most experiment sets. In FIG. 4B the communication over-
head costs remain under 5% in most experiments sets. In
FIG. 4C the 1/O overheads remain under 10% in most
experiment sets but there is an upward trend as the number
of parallel nodes increase. This occurs due to the saturation
of the shared file system bandwidth. In FIG. 4D the sched-
uling costs remain under 5% for most experiment sets. The
scheduling costs may increase if the workload per node is
extremely small. In FIG. 4E the time series shows that the
task scheduling algorithm efficiently redistributes the paral-
lel threads as soon as a surge in cost is detected. The solid
(red) line representing 41G (i.e., the 41 GB dataset) peaks
with a t_wait value above 15 seconds (s) in the first few
batches, then reduces to essentially zero or very near zero,
and does not have any more data past about the 180th batch.
The phantom (black) line representing 15G (i.e., the 15 GB
dataset) peaks with a t_wait value just below 7.5 s in the first
few batches (one or two batches later than the peak for 41G),
then reduces to essentially zero or very near zero, and does
not have any more data past about the 210th batch. The
dashed (purple) line representing 71G (i.e., the 71 GB
dataset) peaks with a t_wait value just above 7.5 s in the first
few batches (one or two batches later than the peak for 15G
and two to four batches later than the peak for 41G), then
reduces to essentially zero or very near zero, with peaks
rising above zero of (1) about 6.5 s at about batch 150, (2)
just less than about 10 s at about batch 300, (3) about 7 s at
about batch 375, (4) about 3 s at about batch 535, and (5)
about 6.5 s at about batch 635, and has data out to about the
750th batch. Some 71G peaks occur at a single batch number
(e.g., around batch 375 and around batch 535) while some
71G peaks occur across multiple nearby batch numbers
(e.g., around batches 135-150, or around batches 295-301).

10

20

25

30

35

40

45

50

55

60

65

18

FIG. 5 is a graphical representation of sampling interme-
diate results around the mean. As shown in FIG. 5 the
intermediate results at all parallel processes are sampled
around the mean. The mean is computed roughly by aver-
aging the locations of three most intense samples in the
distribution. Then, the most intense s=120 data points
around the mean are kept around the mean and the others are
discarded. The discarding method prunes the distribution tail
samples first as they can be recovered by fitting a log-
Weibull distribution in the sampled data.

FIG. 6 is a schematic representation of a process to create
experimental spectra data. The proteins are proteolyzed into
peptides using an enzyme, typically Trypsin. The resultant
peptide mixture is fed to an automated liquid chromatogra-
phy (LC) coupled two-staged MS/MS pipeline (LC-MS/
MS) which yields the experimental MS/MS data.

FIG. 7 is a schematic representation of a process to extract
experimental spectra data from a pseudo-spectra database
derived from in-silico simulation of digestion of entries from
a protein sequence database by peptide sequences. The
acquired experimental MS/MS data are compared against a
database of model-spectra data. The model-spectra are simu-
lated in-silico using a protein sequence database. Post-
translational modifications (PTMs) are added in the simu-
lation process to expand the search space.

FIG. 8 is a schematic representation of improved LBE
method used in the superstep 1, which clusters the model-
spectra database entries (shown as shapes) using two dis-
tance metrics: Edit Distance (Ae) and Mod Distance (Am)
(Example 4). The obtained database clusters are then finely
and evenly scattered across database partitions at parallel
HiCOPS processes in either round robin or random fashion.
The LBE method (Haseeb, 2019) is improved herein by
using an additional metric called Mod Distance as described
throughout this application.

FIGS. 9A-9L. are graphical representations of perfor-
mance metrics (time, speed improvement, and strong scale
efficiency) for experiment sets el through el2. The follow-
ing sub-figures show the decomposition of the runtime,
improvement in speed (“speedup”), and strong-scale effi-
ciency results obtained for all 12 experiment sets (el-el2)
into individual supersteps (sj) and overheads (V). The sub-
figures depict that the overall efficiency increases as the
workload (database, dataset and search filter) size increase.
It can also be seen that the overall speedup (and efficiency)
closely follows the superstep 3 (s3) confirming its largest
contribution towards the overall performance. This obser-
vation further indicates that the overheads associated with
these supersteps must be correctly identified and optimized
for the best performance. The super-linear improvements in
speed were observed in cases of large experimental work-
loads (e.g., database is larger than 50 million peptides and
dataset is larger than 1 million spectra for select embodi-
ments) result from the improved CPU utilization due to the
reduced memory intensity per parallel node (See FIG. 3C).
The definition of a large workload in this context depends on
multiple factors that may change from case to case. In
general, the bigger the better, in the sense that embodiments
of the subject invention are much more robust and resilient
against performance delays as compared to related and/or
known methods.

Online Methods
Notations and Symbols

Denote the number of peptide sequences in the database
as (€), average number of post-translational modifications
(PTMs) per pep-tide sequence as (m), the total database size
as (L2 m)=D), the number of parallel nodes/processes as

US 11,309,061 B1

19

(P), number of cores per parallel process as (cpi), size of
experimental MS/MS dataset (i.e. number of experimental/
query spectra) as (q), average length of query spectrum as
(P), and the total dataset size as (qff). The runtime of
executing the superstep (j) by parallel task (pi) will be
denoted as (Tj,pi) and the generic overheads due to boiler-
plate code, OS delays, memory allocation etc. will be
captured via (ypi).
Runtime Cost Model

Because the HiCOPS parallel processes run in SPMD
fashion, the cost analysis for any parallel process (with
variable input size) is applicable for the entire system. Also,
the runtime cost for a parallel process (piEP) to execute
superstep (j) can be modeled by only its local input size (i.e.
database and dataset sizes) and available resources (i.e.
number of cores, memory bandwidth). The parallel pro-
cesses may execute the algorithmic work in a data parallel,
task parallel or a hybrid task and data parallel model. As an
example, the execution runtime (cost) for a parallel process
pi to execute superstep (j) which first generates D model-
spectra using algorithm k, and then sorts them using algo-
rithm k, in data parallel fashion (using all cpi cores) will be
given as follows:

T,y (D) D)+, @

Similarly, if the above steps k_ are performed in a hybrid
task and data parallel fashion, the number of cores allocated
to each (k') must also be considered. For instance, in the
above example, if the two algorithmic steps are executed in
sub-task parallel fashion with c,,/2 cores each, the execution
time will be given as:

T, pmmax(k; (D,c, /2) kio(D,c, J2)) Y, 3)

For analysis, if the time complexity of the algorithms used
for step k, is known (say O(.)), convert it into a linear
function k', with its input data size multiplied by its runtime
complexity. This conversion will allow better quantification
of serial and parallel runtime portions as seen in later
sections. As an example, if it is known that the sorting
algorithms used for k , have time complexity: O(N log N),
the equation 2 can be modified to:

Ty, =y (D)+k)o(D log D+, @

Remarks: The formulated model will be used to analyze
the runtime cost for each superstep, quantify the serial,
parallel and overhead costs in the overall design, and opti-
mize the overheads.

Superstep 1: Partial Database Construction

In this superstep, the HICOPS parallel processes construct
a partial database by executing the following three algorith-
mic steps in data parallel fashion (FIG. 2):

1. Generate the whole peptide database and extract a (load

balanced) partition.

2. Generate the model-spectra data from the local peptide

database partition.

3. Index the local peptide and model-spectra databases

(fragment-ion index).

The database entries are generated and partitioned
through the LBE algorithm (Haseeb, supra.), supplemented
with a new distance metric called Mod Distance (Am). The
proposed Am separates the pairs of database entries based on
the edit locations if they have the same Edit Distance (Ae)
(See Example 3). The reason for supplementing LBE with
the new distance metric is to better construct computation-
ally-near-identical (load balanced) database partitions across
parallel HICOPS processes. Embodiments partition large
databases into small but evenly-distributed partitions which

20

25

40

45

55

20

are processed on parallel nodes (e.g., the data in each
partition would roughly look similar from a processing
resources perspective). Mod Distance is an improvement
implemented in the LBE algorithm which works in conjunc-
tion with the Edit Distance. The primary role of Mod
Distance is to act as a tie-breaker in case Edit Distance is not
sufficient to parse the data into equally balanced partitions.
Mod Distance improves the efficiency of load balancing.

FIG. 8 illustrates the generic LBE algorithm, a novel
technique for efficient model-spectra database partitioning.
For a pair of peptide database entries (X, y), assuming the
sum of unedited letters from both sequence termini is (a), the
Mod Distance (Am) is given as:

a
Am(x, y) =2~ max(len(x), len(y))

Cost Analysis: The first step generates the entire database
of size (D) and extracts a partition (of roughly the size
D/P=D,,,) in runtime: k,, (D). The second step generates the
model-spectra from the partitioned database using standard
algorithms (see, e.g., Eng et al., An approach to correlate
tandem mass spectral data of peptides with amino acid
sequences in a protein database, Journal of the American
Society for Mass Spectrometry, 5(11):976-989, 1994, which
is hereby incorporated by reference herein in its entirety), in
runtime: k;,(D,,). The third step constructs a fragment-ion
index (e.g., similar to Kong et al., Msfragger: ultrafast and
comprehensive peptide identification in mass spectrometry-
based proteomics, Nature methods, 14(5):513, 2017; Chi et
al., pfind-alioth: A novel unrestricted database search algo-
rithm to improve the interpretation of high-resolution
MS/MS data, Journal of proteomics, 125:89-97, 2015; and
Haseeb et al., Efficient shared peak counting in database
peptide search using compact data structure for fragment-ion
index, 2019 IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM), pages 275-278. IEEE, 2019,
which are hereby incorporated by reference herein in their
respective entireties), in runtime: O(N log N). The CFIR-
Index (Haseeb et al., Efficient shared peak counting in
database peptide search using compact data structure for
fragment-ion index, 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pages 275-278.
IEEE, 2019) indexing method was employed due to its
smaller memory footprint. This results in time k';3(D,, log
D,,) for the indexing step. Collectively, the runtime for this
superstep is given by Equation 5.

Ty=max,, (k) (D)+k 5 (D,)+k"13(D,, log D,))+Y,,.)]

Remarks: Equation 5 depicts that the serial part of execu-
tion time i.e. k,, (D) limits the parallel efficiency of superstep
1. However, using simpler but faster database partitioning
may result in imbalanced partial databases leading to severe
performance deprecation.

Superstep 2: Experimental MS/MS Data Pre-Processing

In this superstep, the HiCOPS parallel processes pre-
process a partition of experimental MS/MS spectra data by
executing the following three algorithmic steps in data
parallel fashion (e.g., as shown in FIG. 2):

1. Read the dataset files, create a batch index and initialize

internal structures.

2. Pre-process (i.e. normalize, clear noise, reconstruct

etc.) a partition of experimental MS/MS data.

3. Write-back the pre-processed data.

The experimental spectra are split into batches such that
a reasonable parallel granularity is achieved when these

US 11,309,061 B1

21

batches are searched against the database. By default, the
maximum batch size is set to 10,000 spectra and the mini-
mum number of batches per dataset is set to P. The batch
information is indexed using a queue and a pointer stack to
allow quick access to the pre-processed experimental data in
the superstep 3.

Cost Analysis: The first step reads the entire dataset (size:
gPp) and creates a batch index in runtime: k21(qf). The
second step may pre-process a partition of the dataset (of
roughly the size: qf/P=Qpi) using a data pre-processing
algorithm (e.g., Ding et al., A novel approach to denoising
ion trap tandem mass spectra, Proteome Science, 7(1):9,
2009; Deng et al., pclean: an algorithm to preprocess high-
resolution tandem mass spectra for database searching,
Journal of proteome research, 18(9):3235-3244, 2019; and
Liu et al., Full-spectrum prediction of peptides tandem mass
spectra using deep neural network, Analytical Chemistry,
92(6):4275-4283, 2020, which are hereby incorporated by
reference herein in their respective entireties), in runtime:
k22(Qpi). The third step may write the pre-processed data
back to the file system in runtime: k23(Qpi). The second and
third steps may altogether be skipped in subsequent runs or
in case when the pre-processed spectra data are available.
Collectively, the runtime for this superstep is given by
Equation 6.

Tr=max,, (k> (qB)+k>(Qp)+a3(0p) +1,) 6

Remarks: Equation 6 depicts that the parallel efficiency of
superstep 2 is highly limited by its dominant serial portion
i.e. k21(qf). Moreover, this superstep is sensitive to the file
system bandwidth since large volumes of data may need to
be read from and written to the shared file system.
Superstep 3: Partial Database Peptide Search

This superstep in HICOPS workflow may be responsible
for 80-90% of the database peptide search algorithmic
workload in real world experiments. In this superstep, the
HiCOPS parallel processes search the pre-processed experi-
mental spectra against their partial databases by executing
the following three algorithmic steps in a hybrid task and
data parallel fashion (FIG. 2):

1. Load the pre-processed experimental MS/MS data

batches into memory.

2. Search the loaded spectra batches against the (local)

partial database and pro-duce intermediate results.

3. Serialize and write the intermediate results to the shared

file system assigning them unique tags.

Cost Analysis: The sub-task (R) reads the experimental
data batches in runtime: k30(qf}). The sub-task (1) iteratively
filters the partial database using multiple criteria followed by
formal spectral comparisons (or scoring). Most commonly,
the database peptide search algorithms use two or three
database filtration steps such as peptide precursor mass
tolerance, shared fragment-ions, and sequence tags.
Embodiments may use the first two filtration methods (e.g.,
peptide precursor mass tolerance, shared fragment-ions, or
sequence tags) that execute in run-time: k31(qDpi)+k32
(qpapi) respectively, or other methods known in the art.
Here, the api represents the average filtered database size
filtered from the first step. The formal experimental spec-
trum to model-spectra comparisons (spectral comparisons)
are performed using scoring methods such as cross-corre-
lation, hyperscore, or other scoring methods known in the
art, in runtime: k33(qpopi)+k34(qupi). Here, the opi and ppi
represent the average number of filtered shared-ions and
model-spectra per experimental spectrum. Finally, the sub-
task K writes the partial results to the shared file system in
runtime: k35(q).

20

25

30

40

45

50

22

Overhead Costs: Multiple runtime overheads stemming
from load imbalance, producer-consumer speed mismatch,
file system bandwidth congestion can affect the performance
of this superstep. Therefore, it is important to capture them
using an additional runtime cost: Vpi (q, Dpi, P). The
optimizations implemented to alleviate these overhead costs
in superstep 3 include buffering, task scheduling, load
balancing and data sampling (discussed in later sections).
Collectively, the runtime for this superstep is given by
Equation 10.

The runtime of sub-task R. i.e. t,(x, Irl), is given as:

lpi(V, 1#)=k30(qB,171)

The runtime of sub-task I, i.e. t,(i, lil), is given as:

M

L, (i 1il=ks 1.(qu1-x D) +k35(g B0y, i +k33(gB0,)+h 34
(quy, 1)

Or:
L, (L1iN=k"3 (g log(D,,),lil)+k'5>(qPB log(a,,),lil)+

k33(ql?)0pi’ [‘)+k34(qlu’pi’ I£1) (8)

The runtime of sub-task K, i.e. t,(k, Ikl), is given as:

L {5 e =F3s(g, 1K) ©

Combining equations m, and @ we have:

Ty=max, (max(t,(%171),5,,(1, lil),5,,(k |k))+

Voila.D,, P)+ip;)

Remarks: Equations 7, 8, 9 and 10 depict that the parallel
runtime portion of this superstep grows quadratically super-
seding the (small) serial portions capable of near ideal
parallel efficiency if the overheads are eliminated.
Superstep 4: Result Assembly

In this superstep, the HICOPS parallel processes assemble
the intermediate results from the last superstep into complete
results by executing the following algorithmic steps in a
hybrid task and data parallel fashion (FIG. 1, panel d):

1. Read a set of intermediate result batches, assemble
them into complete results, and send the assembled
results to their parent processes.

2. Receive complete results from other parallel processes
and synchronize communication.

3. Write the complete results to the file system.

Two parallel sub-tasks are created to execute the algo-
rithmic steps in this super-step. The first sub-task reads sets
of intermediate results from the shared file system (or shared
memory) (satisfying: tag % p,=0; p,EMPI de-serializes them
and assembles the complete results. The statistical signifi-
cance scores are then computed and sent to their origin
processes. For example, the process with MPI rank 4 will
process the all intermediate result batches with tag 0x8 i
where i=0, 1, . . . , P-1. The assembly process is done
through signal addition and shift operations illustrated in
FIG. 1D. The expectation scores (e-Values (ev)) are com-
puted using null hypothesis approach by first smoothing the
assembled data through Savitzky-Golay filter (or other filters
known in the art) and then applying significance test through
either the Linear-Tail Fit or log-Weibull (Gum-bel) Fit
method illustrated in FIG. 1D, or other methods known in
the art. Some curve smoothing/fitting methods provide more
accurate results at higher computing cost, others have lesser
accuracy but can be used at a lower computing cost. The
computed e-Values along with additional information (16
bytes) are sent to the HiCOPS process that recorded the most
significant database hit (origin). The computed results are

(10)

US 11,309,061 B1

23

not sent immediately but are accumulated in a map data
structure as part of the first parallel sub-task and sent
collectively to the second parallel sub-task when all batches
are done. All available cores (cpi) are assigned to this
sub-task. Algorithm 4 depicts the algorithmic work per-
formed by this sub-task.

The second sub-task runs and waits for P-1 packets of
complete data from other HICOPS processes. This task runs
inside an extra (over-subscribed) thread in a con-current
fashion and only activates when incoming data is detected.
Finally, once the two sub-tasks complete (join), the complete
results are written to the file system in data parallel fashion
using all available threads.

Cost Analysis: The first sub-task reads the intermediate
results, performs regression and sends computed results to
other processes in runtime: k,,(Q,,, ¢,)+K45(Q,,; €,)+K 45 (P,
1) time. The second sub-task receives complete results from
other tasks in runtime: k (P, 1). Finally, the complete results
are written in runtime: k,5(Q,,;). Collectively, the runtime for
this superstep is given by equation 11.

Ty=max,, (max (ks (Qp, Cp)thax(Opy Cp)thaz (B)tkay
(BU)+eas(Qp)+, an

To simplify equation 11, re-write it as a sum of compu-
tation costs plus the communication overheads (k_,,,(P, 1))
as:

Ty=max,, (k41 (Qp, Cp) thax(Qpy Cp)tkoom (L1)hys
QP 1') +Yp i

Assuming that the network latency is denoted as (w),
bandwidth is denoted as ()

12

keomB1)=2(P-1)(0+16Q,,/m)

Remarks: As the communication per process are limited
to only one data exchange between any pair of processes, the
overall runtime given by equation 12 is highly scalable. The
effective communication cost depends on the amount of
overlap with computations and the network parameters at
the time of experiment.

Performance Analysis

To quantify the parallel performance, decompose the total
HiCOPS time T, (Eq. 1) into three runtime components. i.e.
parallel runtime (T,), serial runtime (T,) and overheads
runtime (T,) given ns:

4 (13)
Ty = Zmaxp‘. T p)=T,+T,+T,
=

Using equations i}, i3; , and

N , We separate
the three runtime components as:

To=Vp {4 Dy, P)+1p; 14

T=ky1(@)+ky1 (qB)+h o (B1) s
and:
T, p:klz(Dpi)-"k 12 Dpi log Dpi)+k22(Qpi)+k23(Qpi)+

max (G (1711, (6, 1), VD) g (D

k42(Qpi’ Cpi) +hys (Qpi) (16)

T; is the minimum serial time required for HiCOPS
execution and cannot be further reduced. Therefore, we will
focus on optimizing the remaining runtime: T=T,+T,,.

10

15

20

25

30

35

40

45

50

55

60

65

and 18 we have:

Using equations
Tr=kp(D,)tk \5(D,, log D,)+kx (0,)+e3(0,)+

max(ty (0,171,153, 11).0, (VD g (D)

k42(Qpy Cp)+has(Op)+ T, (17)

Since the HiCOPS parallel processes divide the database
and experimental dataset roughly fairly in supersteps 1 and
2, the first four and the sixth term in T, are already almost
optimized, so we can prune them from T,:

Termnax (1, (4 191).0,, G, i), KD+ (©)+

kan(Qpy Cp)+ +kas(Qp)+ T, 18)

The superstep 4 runtime is optimized for maximum
parallelism (and least inter-process communication) and that
the superstep 3 performs the largest fraction of overall
algorithmic workload. Thus, removing the superstep 4 terms
from TF simplifies the analysis:

Trmmax(t, (5, 11,0, i),k |kD)+T,

The superstep 3 is executed using the producer-consumer
pipeline (FIG. 1C) where the sub-task R must produce all
data before it can be consumed by I meaning its runtime
must also be smaller than t,, (i, lil) and t,, (k, Ikl) allowing a
safe removal from the above equation yielding:

Temmax(t, (i, i), 1, (K ED)+ T,

In above equation, rewrite the max(.) term as the time to
complete sub-task L:(t, (i, lil)) plus the extra time to com-
plete sub-task K (the last consumer): t, (k). Therefore, using
equation 9:

Tp=k'31(q 1og(D,),li+k'32(gP log(a,,), i)+

Fy3(@B Oy, i) (i 1)+, (19)

Prune the first two terms in the equation 19 as well since
their runtime contribution: O(log 1V) will be relatively very
small. Finally, using equation 14 in 19:

Tr=ka3(qp0,, I +k3a(qu,, i+ V,(q.Dp, P)), (20)

Remarks: The equations 17-19 and the simplifications
made may be modified according to the changes in superstep
design and/or the algorithms employed in either superstep.
Optimizations

The overhead cost term: V,(q, P) represents the load
imbalance (or synchronization), producer-consumer speed
mismatch, and data read costs, while the term: t (k) repre-
sents the data write cost. These overheads may result in a
large subset of processing cores to idle (wasted CPU cycles).
Furthermore, the load imbalance cost encapsulates all other
costs in itself. This is because at a macro level (when only
measuring the total overhead time wasted by waiting for one
or more lagging processes) the total cost is actually also the
load imbalance cost. The total cost (or now the load imbal-
ance cost) may itself consist of many factors including the
1/0, x(k), memory, etc., as explained above.

The following sections discuss the optimization tech-
niques employed to alleviate these overhead costs.
BuCering

Four queues, the forward queue (qy), recycle queue (g,)
and result queues (ql,, q';,) are initialized and routed between
the producer-consumer sub-tasks in the superstep 3 (FIG.
1C) as: R—1, R«—1, [-=K and [<-K respectively. The q, is
initialized with (e.g., 20) empty buers for the sub-task R to
fill the pre-processed experimental data batches and push in
q, The sub-task I removes a buffer from q, consumes it
(searches it) and pushes back to qr for re-use. The results are
pushed to g, which are consumed by sub-task K and pushed

US 11,309,061 B1

25

back to q', for re-use. Three regions are defined for the queue
q,based on the number of data buffers it contains at any time.
ie. wli(gplen<S), w,:(5=qplen<15) and w,:(qslen=15).
These regions (w,) are used by the task-scheduling algo-
rithm discussed in the following section.
Task Scheduling

The task scheduling algorithm is used to maintain a
synergy between the producer-consumer (sub-task) pipeline
in the superstep 3. The algorithm initializes a thread pool of
cp;'2 threads where c,, is the number of available cores. In
the first iteration, 2 threads are assigned to the sub-tasks R
and K while the remaining cpi‘2 threads are assigned to
sub-task I. Then, in each iteration, the q,region: w,, and the
qspop() time for 1, given by: twait, are monitored. A time
series is built to forecast the next twait (i.e. t,) using double
exponential smoothing or other methods known in the art.
The t,,,,, is also accumulated into t_,,,. Two thresholds are
defined: minimum wait (t,,,;,,) and maximum cumulative wait
(t,,4)- Using all this information, a thread is removed from
sub-task I and added to R if the following conditions are
satisfied:

R i tmin’ orom))\ (W =W NF1=0)

The t_,,, is set to 0 every time a thread is added to R.
Similarly, a thread is removed from sub-task R and added to
1 if the following conditions are satisfied.

All threads are removed from R if the queue q,becomes
full or there is no more experimental MS/MS data left to be
loaded.

Croa=(W = w3 NP> 1)\ /g full()

The sub-task K uses its 2 over-subscribed threads to
perform the overlapped 1/O operations concurrently (FIG.
10).

Load Balancing

The algorithmic workload in equation 20 is given by:
k33(q'3°pi, lil)+ks4(g",,, lil). Here, the terms gff and q are
constants (experimental data size) whereas the terms o,, and
W, are variable. The variable terms represent the filtered
database size for a parallel HICOPS process (p,) and thus,
must be balanced across processes. This may be accom-
plished statically by constructing balanced database parti-
tions (hence a balanced workload) using the LBE algorithm
supplemented with the Mod Distance metric in Superstep 1
(Online Methods, FIGS. 1A and 8). The correctness of the
LBE algorithm for load balancing is proven in Example 4.
Sampling

The intermediate result produced by a parallel process (p;)
for an experimental spectrum (q) included: M top scoring
database hits (8 bytes) and the frequency distribution of
scores (local null distribution) (2048 bytes). Since this
frequency distribution follows a log-Weibull, most of the
data are localized near the mean. Using this information,
locate the mean and sample a number, s (e.g., s=120) most
intense samples from the distribution, and remove the
samples, if necessary, from the tail first. This allows to fit all
the intermediate results in a buffer of 256 bytes limiting the
size of each batch to 1.5 MB. Thus, the intermediate results
are quickly written to the file system by the sub-task K
resulting in minimum data write cost: t,(k). FIG. 5 illustrates
an example of the sampling method.

Code Availability

The HiCOPS core parallel model and algorithms have
been implemented using object-oriented C++14 and MPL.
The rich instrumentation feature has been implemented via
Timemory for performance analysis and optimizations.
Timemory is a software toolkit that allows an elegant way of

30

35

40

45

55

26

instrumenting code using a rich/diverse set of instrumenta-
tion metrics which can be further used to gain insights into
the software performance. Timemory is not itself directly
critical to HiCOPS’s performance, but was used to perform
a wide-ranged instrumentation to figure out when and why
HiCOPS was or is performing better or worse. Command-
line tools for MPI task mapping (e.g., Example 5, Algorithm
5), user parameter parsing, peptide sequence database pro-
cessing, file format conversion and result post-processing
can also be distributed with the HiCOPS framework. The
build may be managed via CMake 3.11+, or other tools
known in the art. Please refer to the software web page:
hicops.github.io for source code and documentation.

Data Availability

The datasets and database used in this study are publicly
available from the mentioned respective data repositories.
The experiment configuration files and raw results pertinent
to the findings of this study are available from the corre-
sponding author upon request.

The methods and processes described herein can be
embodied as code and/or data. The software code and data
described herein can be stored on one or more machine-
readable media (e.g., computer-readable media), which may
include any device or medium that can store code and/or
data for use by a computer system. When a computer system
and/or processor reads and executes the code and/or data
stored on a computer-readable medium, the computer sys-
tem and/or processor performs the methods and processes
embodied as data structures and code stored within the
computer-readable storage medium.

It should be appreciated by those skilled in the art that
computer-readable media include removable and non-re-
movable structures/devices that can be used for storage of
information, such as computer-readable instructions, data
structures, program modules, and other data used by a
computing system/environment. A computer-readable
medium includes, but is not limited to, volatile memory such
as random access memories (RAM, DRAM, SRAM); and
non-volatile memory such as flash memory, various read-
only-memories (ROM, PROM, EPROM, EEPROM), mag-
netic and ferromagnetic/ferroelectric memories (MRAM,
FeRAM), and magnetic and optical storage devices (hard
drives, magnetic tape, CDs, DVDs); network devices; or
other media now known or later developed that are capable
of storing computer-readable information/data. Computer-
readable media should not be construed or interpreted to
include any propagating signals. A computer-readable
medium of embodiments of the subject invention can be, for
example, a compact disc (CD), digital video disc (DVD),
flash memory device, volatile memory, or a hard disk drive
(HDD), such as an external HDD or the HDD of a comput-
ing device, though embodiments are not limited thereto. A
computing device can be, for example, a laptop computer,
desktop computer, server, cell phone, or tablet, though
embodiments are not limited thereto.

A greater understanding of the embodiments of the sub-
ject invention and of their many advantages may be had
from the following examples, given by way of illustration.
The following examples are illustrative of some of the
methods, applications, embodiments, and variants of the
present invention. They are, of course, not to be considered
as limiting the invention. Numerous changes and modifica-
tions can be made with respect to the invention.

Example 1

Limitations in the related art—the major limitation in all
existing distributed memory database peptide search algo-

US 11,309,061 B1

27

rithms is the inflated space complexity=O(PN) where P is
the number of parallel nodes and O(N) is the space com-
plexity of their shared-memory counter parts. The space
complexity inflation stems from the replication of massive
model-spectra databases at all parallel instances. Conse-
quently, the application of existing algorithms is limited to
the use cases where the indexed model-spectra database size
must fit within the main memory on all system nodes to
avoid the expensive memory swaps, page faults, load imbal-
ance and out-of-core processing overheads leading to an
extremely inefficient solution. Furthermore, as the PTMs are
added, this memory upper-bound is quickly exhausted due to
the combinatorial increase in the database size, incurring
further slowdowns. For a reference, the model-spectra data-
base constructed from a standard Homo sapiens proteome
sequence database can grow from 3.8 million to 500 million
model-spectra (0.6 TB) if only the six most common PTMs
(i.e. oxidation, phosphorylation, deamidation, acetylation,
methylation and hydroxylation) are incorporated. There
have been some efforts towards investigations of parallel
strategies that involve splitting of model-spectra databases
among parallel processing units. In these designs, the data-
base search is implemented in a stream fashion where each
parallel process receives a batch of experimental data,
executes partial search, and passes on the results to the next
process in the stream. However, these models suffer from
significant amounts of on-the-fly computations and frequent
data communication between parallel nodes leading to high
compute times, and limited (~50%) parallel efficiency (see,
e.g., Gaurav Kulkarni, et al., A scalable parallel approach for
peptide identification from large-scale mass spectrometry
data, In 2009 International Conference on Parallel Process-
ing Workshops, pages 423-430, IEEE, 2009; which is hereby
incorporated by reference herein in its entirety).

Example 2

Mod Distance. The proposed Mod Distance (Am) is used
as a supplementary metric in peptide database clustering in
superstep 1 (the improved LBE method). The application of
this metric can be best understood through an example.
Consider three database peptide sequences p: MEGSYIRK,
q: ME*GSYI*RK and r: MEGS*Y*IRK. The bold letters
represent the normal amino acids in the peptide and the
letters followed by (*) represent the modified amino acids.
In this example the Edit Distance between the pairs (Ae(p,
q)=Ae(p, r)=2) cannot di[Jerentiate. Now apply the Mod
Distance on this scenario which considers the shared peaks
between the peptide pairs to further separate them. For
example, the shared (b- and y-) ions (or peaks) between p
and q are: ME*GSYI*RK=3 (underlined letters), yielding
Am(p, q)=1.625 and the peaks shared between p and r are:
MEGS*Y*IRK=6 (underlined letters), yielding Am(p,
r)=1.25. This indicates that the entries p and r should be
located at relatively nearby database indices. The Mod
Distance can be easily generalized for other ion-series such
as: a-, ¢c-, X-, Z-ions and immonium ions as well.

Example 3

Correctness of LBE. Assume the peptide precursor m/z
distribution of any given database is g(m) and that of any
given dataset is f(m), then the LBE algorithm statically
results in fairly balanced workloads at all parallel nodes.

Proof. The algorithmic workload w(f, g) for database
peptide search can be given as the cost of performing the

20

25

40

45

55

60

28

total number of comparisons to search the dataset f(m)
against the database g(m) using filter size 0M and shared
peakszk, mathematically:

w(f, g = COS{Z
m=0

where:
shp(f,g k)=count(shared_peaks(f,g)=k)

M
Fim) D shp(fm), glm +2), k)

=M

The above equations imply that the database distribution
i.e. Zshp(f(m), g(m+z), k) must be similar at all parallel
nodes in order to achieve system-wide load balance. The
LBE algorithm achieves this by localizing (e.g., by 8M and
shared peaks) the database entries and then finely scattering
them across parallel nodes (FIG. 8) producing identical local
database distributions gloc(m) at parallel nodes thereby, and
identical workloads. This theorem can also be extended to
incorporate sequence-tag based filtration methods in a
straightforward manner.

Example 4

Task Mapping. The parallel HICOPS tasks are configured
and deployed on system nodes based on the available
resources, user parameters and the database size. The pre-
sented algorithm assumes a Linux based homogeneous
multicore nodes cluster where the interconnected nodes have
multicores, local shared memory and optionally a local
storage as well. This is the most common architecture in
modern supercomputers including XSEDE Comet, NERSC
Cori, etc. However, alternative algorithms, operating sys-
tems, configurations, and implementations are contem-
plated. The resource information is read using Linux’s lscpu
utility. Specifically, the information about shared memory
per node (A), NUMA nodes per node (u), cores per NUMA
node (cu), number of sockets per node (s) and cores per
socket (cs) is read. The total size of database (D) is then
estimated using protein sequence database and user param-
eters. Assuming the total number of system nodes to be P, the
parameters: number of MPI tasks per node (tn) and the
number of parallel cores per MPI task (tc) and MPI task
binding level (tbl) are optimized as depicted in Algorithm 5.
The optimizations ensure that: 1) System resources are
efficiently utilized 2) The MPI tasks have sufficient
resources to process the database and 3) The MPI tasks have
an exclusive access to a disjoint partition of local compute
and memory resources.

In accordance with the subject invention, in Algorithm 5,
the lines 8 to 14 iteratively reduce the cores per MPI task
while increasing the number of MPI tasks until the database
size per MPI task is less than 48 million (empirically set for
XSEDE Comet nodes). This was done to reduce the memory
contention per MPI process for superior performance. The
while loop may be removed or modified depending on the
database search algorithms and machine parameters. The
value of “48 million spectra” was set in this embodiment
specific to the Comet machine, and the value may be
different for other machines. The justification to select 48
million was that each socket in Comet has direct access to
64 GB RAM which can fit roughly at most 48 million
spectra without having to indirectly access more than 64 GB
RAM. This number may need to be set for each individual
system by the user, based on available system resources and
database parameters.

US 11,309,061 B1
29 30

Exemplary Algorithms -continued

The following algorithms can be used with embodiments

of the subject invention. Algorithm 3

Algorithm 3: Partial DB search by sub-task R (Superstep 3)

5 9 || res;.append(heap);
Algorithm 1
Algorithm 1: Partial Database Construction in Superstep 1 /* recycle the buffer back to g, ¥/
10 q,.push(b);
Data: peptide sequences (€) /* push the intermediate results batch to gy */
Results: indexed partial Database (D;) 11 qi-push(res;);
/* generate databse entries */ 10
1 for s in € do in parallel
2 | for v in 2™ do
3 | |'e < gen_entry(v);
[/* .add Fo partial database if mine */ Algorithm 4
4 | Iif is_mine(e,) then Algorithm 4: Result Assembly in Superstep 4
5 | | | E.append(e); 15
Il Data: rank p;, Intermediate Result batches (r;)
L Result: expect scores (ev)
/* generate model-spectra */ /* extract a batch from queue */
6 for s in D; do in parallel 1 b < qpop();
7 | S.append(model_spectrum(s)); /* get batches that satisfy the condition */
/* index the database in parallel *, 20 2 for b in (b mod p; = 0) do
8 D; < map(parallel_sort(E), parallel_index(S)); 3 | Lappend(b);
/* return the indexed parital database */ /* data parallel assembling of results for each batch */
9 return D; 4 for s in 1 do in parallel
| /* assemble the null distribution */
5 | dist «<— assemble(s);
5 | /* max heapify the scores */
6 | heap < make_heaps(s);
* T 1 *
Algorithm 2: Data load (per thread) by sub-task R (Superstep 3) 8 | fit < TailFit(dist);
Data: forward queue (qy), recycle queue (q,), pointer stack (s,), 9 : [* get thﬁ top hit fromlheap. K
batch index (i,) 30 & <~ heap.pop() value(); i
/* loop unless qffull, preempted or no more batches */ | /% compute the expect score . /
1 while ~ q,full () do 10 | e;/ < (fitw x g, + fit.b) x heap.size(); i
| /* check pointer stack */ | /* push results to a map structure /
5 | if ~ dp then 11 | map.push(key = g,,..-key(), val = ev);
3 | [dp < s pop() /* asyllichronmlls scatter complete result data */
| /* if stack is empty, get a new pointer */ 12 for P 1 P do in parallel
4 | if ~ dp then 35 13 | 1send(ma.p.datal(key = Pi)’ dest = p,);
5 | | dp < ippop(); /* synchromze using barrier */
| /* no more experimental data batches - exit */ 14 barnelr(%
6 I if ~ dp then /* yvnte the results to the file system */
7 || break; 15 write(map.data(key = rank));
| /* check preemption state at g, status */
8 | if ~ preempt () or ~ g,.empty () then 40
9 I I sgpush(dp);
10 || break;
11 | else Algorithm 5
|| /* else get a buffer from q,. */ Algorithm 5: Task Mapping
12 I | bp = g,.pop (%
| /* read a batch of expt data #/ 45 Data: number of nodes (n), node parameters (A, u, ¢, s, ¢,)
13 | dp.read_batch(bp); and database size (D)

| /* push the buffer to q, */ Result: number of MPI tasks per node (t,), cores per MPI
14 | qzpush(bp); task (t,) and MPI binding level (t;)
/* ensure enough memory for database */
1 if D,, = D/P > 0.70 then
50 2 | return err;
/* set MPI binding level */
) 3 ty; < max{u, c};
Algorithm 3 ol A) "
Algorithm 3: Partial DB search by sub-task R (Superstep 3) /% set MPI bl.ndmg policy /
4 ty,, < scatter;
Data: forward queue (q,), recyle queue (q,), partial /% set cores per M_PI task ¥/
database (D,,), result queue (qy) 355 5 t, < min {c,, c.};
/% extract a batch from quene */ /* set number of MPI task per node */
1 b < gepop(); 6 t, < max{u, c};
/* data parallel search */ 7 b - te; - .
) for e in b do in parallel /* thlonal: optimize évor memory bandwidth */
| /* apply the precursor mass filter */ 8 while (D/t, > 48 x 10).do
3 | o, < filter,(D,,, €); | /* Choose the next highest factor of t,, . */
£ Wen T8 60 9 | 0, < factorize(t,,,);
4 | if O, then Dposs max)s
5 |1 for B in e do 10 [if Nppss = t0,/2 then
I I | /* apply the shared peaks filter */ u bt <1, t_mw/nposs;
6 I | | wappend(filters(o,,.B)); 12 1t = Dpoes
|| /* score against the filtered database */ 13 I else
7 || forh in p, do 14 || break
8 I | | heap.push(k < score(h,e)); 65 L
I

| /* append to a batch of intermediate results */ 15 return t, te, top, typs

US 11,309,061 B1

31

It should be understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

All patents, patent applications, provisional applications,
and publications referred to or cited herein are incorporated
by reference in their entirety, including all figures and tables,
to the extent they are not inconsistent with the explicit
teachings of this specification.

What is claimed is:

1. A system for rapid and efficient peptide identification
from large-scale mass spectrometry data through high per-
formance computing database peptide search, the system
comprising:

a symmetric multiprocessor supercomputer comprising a
plurality of processors and shared resources, the shared
resources comprising a shared memory storage in oper-
able communication with the plurality of processors;
and

at least one machine-readable medium in operable com-
munication with the plurality of processors, the at least
one machine-readable medium having instructions
stored thereon that, when executed by one or more
processors of the plurality of processors, perform the
following supersteps:

(a) extracting, by the one or more processors, a plurality
of peptide database partitions (PDBs) from a peptide
database and then indexing the plurality of PDBs, the
plurality of PDBs being extracted by clustering data
entries of the peptide database based at least on a Mod
Distance (um) metric and load balancing the clustered
data entries evenly across the PDBs;

(b) providing, by the one or more processors, a plurality
of experimental spectra, each spectrum of the plurality
of experimental spectra comprising a batch of pre-
processed mass spectrometry data from a mass spec-
trometry data set of a database;

(c) completing, by the one or more processors, a peptide
search of the plurality of experimental spectra against
the plurality of PDBs to produce a plurality of partial
results and serializing the plurality of partial results;
and

(d) assembling, de-serializing, and synchronizing the plu-
rality of partial results to form a complete result for
identifying peptides, and writing the complete result to
a file system, thus providing the rapid and efficient
peptide identification from large-scale mass spectrom-
etry data,

the peptide search further comprising the following steps:

(1) loading the plurality of experimental spectra into a
plurality of forward queues (qf) in the shared memory
storage;

(ii) reading the plurality of experimental spectra from
each respective forward queue in the plurality of for-
ward queues, recycling the forward queue as a return
queue (qr), searching the spectra against the plurality of
PDBs to produce the plurality of partial results, and
writing the plurality of partial results to a plurality of
intermediate queues (qk) in the shared memory storage;
and

(iii) reading the partial results from each respective inter-
mediate queue in the plurality of intermediate queues,
recycling each intermediate queue as an intermediate
return queue (qk'), serializing the plurality of partial
results, and writing the plurality of partial results to the
shared memory storage.

10

15

20

25

30

35

40

45

50

55

65

32

2. The system according to claim 1, the Mod Distance
(Am) given as:

a
Am(x, y) =2~ max(len(x), len(y)

for a pair of peptide database entries (X, y), where the sum
of unedited letters from both sequence termini is (a).

3. The system according to claim 2, at least one processor
of the plurality of processors having a main memory locally
connected thereto, and each spectrum of the plurality of
experimental spectra provided in superstep (b) having a size
selected to fit within the main memory.

4. The system according to claim 1, the superstep (c)
comprising actively allocating shared resources across steps
(1), (i), and (iii) to optimize performance in a multi-
threaded, multi-core, shared memory, parallel process, pro-
ducer-consumer pipeline.

5. The system according to claim 4, the system compris-
ing measurable performance parameters, the performance
parameters comprising one or more of: shared memory per
node (A); NUMA nodes per node (u); cores per NUMA node
(cu); number of sockets per node (s); cores per socket (cs);
estimated or actual total size of database (D); total number
of system nodes (P); number of MPI tasks per node (tn);
number of parallel cores per MPI task (tc); and MPI task
binding level (tbl).

6. The system according to claim 5, the superstep (c)
comprising determining allocation of shared resources based
on one or more of the performance parameters.

7. The system according to claim 1, the superstep (d)
comprising a first parallel sub-task comprising de-serializa-
tion and assembly of the plurality of partial results, and a
second parallel sub-task comprising data smoothing and
application of a significance test to compute e-Values.

8. The system according to claim 5, the symmetric mul-
tiprocessor supercomputer comprising processing cores
allocated to MPI tasks, and

the instructions when executed by one or more processor

of the plurality of processors further performing a step

of iteratively reducing the number of parallel cores per

MPI task while increasing the number of MPI tasks

until the PDB size per MPI task reaches a defined

threshold.

9. A method for rapid and efficient peptide identification
from large-scale mass spectrometry data through high per-
formance computing database peptide search, the method
comprising:

providing a symmetric multiprocessor supercomputer

comprising a plurality of processors and shared
resources, the shared resources comprising a shared
memory storage in operable communication with the
plurality of processors, and at least one machine-
readable medium in operable communication with the
plurality of processors; and

performing the following supersteps:

(a) extracting, by at least one processor of the plurality
of processors, a plurality of peptide database parti-
tions (PDBs) from a peptide database and then
indexing the plurality of PDBs, the plurality of PDBs
being extracted by clustering data entries of the
peptide database based at least on a Mod Distance
(Am) metric and load balancing the clustered data
entries evenly across the PDBs;

US 11,309,061 B1

33

(b) providing, by at least one processor of the plurality
of processors, a plurality of experimental spectra,
each spectrum of the plurality of experimental spec-
tra comprising a batch of pre-processed mass spec-
trometry data from a mass spectrometry data set of a
database;

(c) completing, by at least one processor of the plurality
of processors, a peptide search of the plurality of
spectra against the plurality of PDBs to produce a
plurality of partial results and serializing the plurality
of partial results; and

(d) assembling, de-serializing, and synchronizing, by at
least one processor of the plurality of processors, the
plurality of partial results to form a complete result
for identifying peptides, and writing the complete
result to a file system, thus providing the rapid and
efficient peptide identification from large-scale mass
spectrometry data,

the peptide search further comprising the following steps:

(1) loading the plurality of spectra into a plurality of
forward queues (qf) in the shared memory storage;

(ii) reading the spectra from each respective forward
queue in the plurality of forward queues, recycling
the forward queue as a return queue (qr), searching
the spectra against the plurality of PDBs to produce
the plurality of partial results, and writing the plu-
rality of partial results to a plurality of intermediate
queues (gk) in the shared memory storage; and

(iii) reading the partial results from each respective
intermediate queue in the plurality of intermediate
queues, recycling each intermediate queue as an
intermediate return queue (gk'), serializing the plu-
rality of partial results, and writing the plurality of
partial results to the shared memory storage.

10. The method according to claim 9, the Mod Distance
(Am) is given as:

a
Amx,y)=2- max(len(x), len(y)

for a pair of peptide database entries (X, y), where the sum
of unedited letters from both sequence termini is (a).

11. The method according to claim 10, each processor of
the plurality of processors having a main memory locally
connected thereto, and each spectrum of the plurality of
experimental spectra provided in superstep (b) having a size
selected to fit within the main memory.

12. The method according to claim 9, the superstep (c)
comprising actively allocating shared resources across steps
(1), (i), and (iii) to optimize performance in a multi-
threaded, multi-core, shared memory, parallel process, pro-
ducer-consumer pipeline.

13. The method according to claim 12, the system com-
prising measurable performance parameters, the perfor-
mance parameters comprising one or more of: shared
memory per node (A); NUMA nodes per node (u); cores per
NUMA node (cu); number of sockets per node (s); cores per
socket (cs); estimated or actual total size of database (D);
total number of system nodes (P); number of MPI tasks per
node (tn); number of parallel cores per MPI task (tc); and
MPI task binding level (tbl), and superstep (c) comprising
determining allocation of shared resources based on one or
more of the performance parameters.

14. The method according to claim 13, the superstep (d)
comprising a first parallel sub-task comprising de-serializa-

35

40

45

50

55

65

34

tion and assembly of the plurality of partial results, and a
second parallel sub-task comprising data smoothing and
application of a significance test to compute e-Values.

15. A system for rapid and efficient peptide identification
from large-scale mass spectrometry data through high per-
formance computing database peptide search, the system
comprising:

a symmetric multiprocessor supercomputer comprising a
plurality of processors and shared resources, the shared
resources comprising a shared memory storage in oper-
able communication with the plurality of processors;
and

at least one machine-readable medium in operable com-
munication with the plurality of processors, the at least
one machine-readable medium having instructions
stored thereon that, when executed by one or more
processors of the plurality of processors, perform the
following supersteps:

(a) providing, by the one or more processors, a plurality
of peptide database partitions (PDBs) from a peptide
database and then indexing the plurality of PDBs, the
plurality of PDBs being extracted by clustering data
entries of the peptide database based at least on a Mod
Distance (Am) metric and load balancing the clustered
data entries evenly across the PDBs;

(b) providing, by the one or mare processors, a plurality
of experimental spectra, each spectrum of the plurality
of experimental spectra comprising a batch of pre-
processed mass spectrometry data from a mass spec-
trometry data set of a database;

(c) completing a peptide search of the plurality of experi-
mental spectra against the plurality of PDBs to produce
a plurality of partial results and serializing the plurality
of partial results; and

(d) assembling, de-serializing, and synchronizing the plu-
rality of partial results to form a complete result for
identifying peptides, and writing the complete result to
a file system, thus providing the rapid and efficient
peptide identification from large-scale mass spectrom-
etry data;

the superstep (a) comprising peptide database clustering
based on the Mod Distance (Am), given as:

a
Am(x, y)=2- max(len(x), len(y)

for a pair of peptide database entries (X, y), where the

sum of unedited letters from both sequence termini is

(@),

each of the plurality of processors having a main memory
locally connected, and each of the plurality of experi-
mental spectra provided in superstep (b) having a size
selected to fit within the main memory on one of the
plurality of processors,

the partial database peptide search comprising the follow-
ing steps:

(1) loading the plurality of experimental spectra into a
plurality of forward queues (qf) in the shared
memory storage;

(ii) reading the plurality of experimental spectra from
each respective forward queue in the plurality of
forward queues, recycling the forward queue as a
return queue (qr), searching the spectra against the
plurality of PDBs to produce the plurality of partial

US 11,309,061 B1

35 36
results, and writing the plurality of partial results to total number of system nodes (P); number of MPI tasks per
a plurality of intermediate queues (qk) in the shared ~ node (tn); number of paralle]l cores per MPI task (tc); and
memory storage; and MPI task blndlng level (tbl),

superstep (¢) comprising determining allocation of shared
resources based on one or more of the performance
parameters,

the superstep (d) comprising a first parallel sub-task
comprising de-serialization and assembly of the plu-

(iii) reading the partial results from each respective
intermediate queue in the plurality of intermediate 3
queues, recycling each intermediate queue as an
intermediate return queue (gk'), serializing the plu-

rality of partial results and writing the plurality of rality of partial results, and a second parallel sub-task
partial results to the shared memory storage, and 0 comprising data smoothing and application of a sig-

the superstep (c) comprising actively allocating shared nificance test to compute e-Values,
resources across steps (i), (i), and (iii) to optimize the symmetric multiprocessor supercomputer comprising
performance in a multi-threaded, multi-core, shared processing cores allocated to MPI tasks, the system
memory, para]]e] process, producer-consumer p]pehne COIan‘iSiIlg a step of iteratively reducing the number of
16. The system according to claim 15, the system com- 15 parallel cores per .MPI task Wh.ﬂe increasing the number
prising measurable performance parameters, the perfor- of MPI tasks until the PDB size per MPI task reaches
mance parameters comprising one or more of: shared a defined threshold, and the threshold being chosen to

optimize system performance of the symmetric multi-

memory per node (A); NUMA nodes per node (u); cores per
processor supercomputer.

NUMA node (cu); number of sockets per node (s); cores per
socket (cs); estimated or actual total size of database (D); I

