
Efficient Shared Peak Counting in Database Peptide
Search Using Compact Data Structure for

Fragment-Ion Index
Muhammad Haseeb†, Fahad Saeed*†

†School of Computing and Information Sciences
Florida International University, Miami, Florida 33199, USA

Email: {mhaseeb,fsaeed}@fiu.edu

Abstract—Database search is the most commonly employed
method for identification of peptides from MS/MS spectra
data that is obtained from a shotgun LC-MS/MS experiment.
The search involves comparing experimentally obtained MS/MS
spectra against a set of theoretical spectra predicted from a
protein sequence database. One of the most commonly employed
similarity metrics for spectral comparison is the shared-peak
count between a pair of MS/MS spectra. Most modern methods
index all generated fragment-ion data from theoretical spectra
to speed up the shared peak count computations between a given
experimental spectrum and all theoretical spectra. However, the
bottleneck for this method is the gigantic memory footprint of
fragment-ion index that leads to non-scalable solutions. In this pa-
per, we present a novel data structure, called Compact Fragment-
Ion Index Representation (CFIR), that efficiently compresses
highly redundant ion-mass information in the data to reduce the
index size. Our proposed data structure outperforms all existing
fragment-ion indexing data structures by at least 2× in memory
consumption while exhibiting the same time complexity for
index construction and peptide search. Our experimental results
confirm superior memory efficiency for CFIR data structure
over existing data structures and methods. The results also show
comparable indexing speed, search speed and speedup scalability
for CFIR based index and state of the art algorithms. Further,
the results show optimal performance scaling for CFIR data
structure for up to 100% more fragment-ion data compared to
the best existing data structure.

Index Terms—indexing, proteomics, optimization, memory-
efficiency

I. INTRODUCTION

In a shotgun proteomics experiment, a complex protein
mixture is proteolyzed using an enzyme, most commonly,
Trypsin. The digested peptides are then fed to a pipeline of
liquid-chromatography (LC) followed by mass spectrometry
(MS/MS). The acquired tandem MS/MS spectra data (called
experimental spectra) are then identified and assigned to a
peptide sequence using computational techniques. The most
commonly used computational method, called database search,
involves searching the experimental MS/MS spectra against
a set of theoretical MS/MS spectra predicted from a pro-
tein sequence database [1]. The search speed and accuracy
of database peptide search algorithms depend on numerous
factors such as search parameters [2], data pre-processing

* Corresponding Author

methods [3], [4], [5], feature selection [6], [7], [8], post-
translational modifications (PTMs) included [9], [10], [5],
[11], database filtration methods [12], [13], [14], [10], peptide-
to-spectrum scoring algorithm [11], [15], [16], [17], [18], [19],
[20], [21], [22], [23], confidence assignment algorithm [24],
[14], [10], [13], [12], [25] and so on.

Recent works have shown that the unrestricted peptide
search methods allow identification of a much larger frac-
tion of experimental MS/MS spectra as compared to re-
stricted peptide search [9], [8], [10], [14], [13]. However,
the unrestricted search consumes massive search times due
to massively increased number of required computationally
expensive peptide-to-spectrum comparisons. Most state-of-the-
art peptide search algorithms employ one or more database
filtration methods to substantially reduce the search space to
only the related database entries when a given experimental
spectrum. Some of the most commonly employed database
filtration methods include peptide precursor mass [26], [27],
[5], [13], sequence-tagging [14], [28], [29], [30], [31], [32],
[33], [13], [12] and shared-peak counting [34], [35], [36], [10],
[37], [38], [39], [12], [19], [27]. Several additional features
including peak labels, complementary peaks, peptide lengths,
average sequence length per missed cleavage, precursor mass
and charge, enzyme specificity, and known post-translational
modifications (PTMs) are also used to correctly assign MS/MS
spectra to database peptide sequences.

Motivation: The shared-peak count is commonly employed
by various modern peptide search algorithms in combina-
tion with several other similarity metrics for search space
filtration and peptide deduction. However, computing shared
peak count between a pair of spectra using naive methods is
highly compute intensive and memory-inefficient. Therefore,
modern shared peak counting techniques usually construct an
(inverted) fragment-ion index to speed up the computation at
the cost of substantially large memory footprint [14], [10],
[38], [7]. The fragment-ion look up (search) from a large
index, specially using multiple cores, is accompanied by huge
memory read/write and caching overheads. Further, as the
database size increases, the index spans over multiple NUMA
nodes (non-local access), may be swapped several times (page
faults), and/or may need to be split into smaller independent
chunks and processed sequentially [10]. All these factors

bottleneck the system performance specially when running
in a multi-processor or a distributed memory environment.
Therefore, this work intends to optimize the fragment-ion
index size without compromising the shared-peak counting
(index look up) speed so that the required memory resources
per unit node are optimized resulting in overall resource and
cost-effective solutions.

Contributions: In this paper, we present a compact data
structure for fragment-ion data that outperforms all exist-
ing data structures in memory footprint. Our proposed data
structure, called Compact Fragment-Ion Index Representation
(CFIR), is based on the observation that the number of unique
ion-masses that appear in the fragment-ion data are extremely
small as compared to the size of data. This property in
data allows us to sort and compress the repeated ion-mass
information in an efficient way significantly reducing the index
size. Our experimental results confirm that the CFIR data
structure consumes at most 50% memory (2× improvement)
as the best existing data structure while exhibiting the same
complexity for index construction and peptide search time.
The results also depict a linear speedup scalability for CFIR
based peptide search with increasing number of parallel cores.
Further, the peptide search speed performance comparison
with increasing index size reveals that the CFIR data structure
exhibits optimal scalability for up to at least 100% more
fragment-ion data as compared to the best existing data
structure. Our results indicate that the proposed data structure
can be used in memory distributed peptide search algorithms
where the algorithm spans over several parallel nodes and
the resources per node must be optimally consumed to avoid
power, network, load imbalance and compute cost penalties.
The CFIR data structure has been implemented as an open-
source software using C/C++ and OpenMP.

II. RELATED WORK

A. Shared Peak Counting

A peak is said to be shared between a pair of MS/MS spectra
if both spectra contain a fragment-ion (peak) having m/z
within a certain mass difference (∆F). This tolerance allows
conversion of floating point ion m/z’s or simply ion-masses to
integers by scaling m/z’s with a factor (r) where r ≥ 1/∆F .
Therefore, a MS/MS spectrum can be represented as a (sparse)
binary vector over a discrete range of dimensions (0 : r : M]
where r is the step size and M is the maximum integer mass
in the spectrum. In this representation, a dot product (with
relaxed mass difference (∆F)) between a pair of MS/MS
spectra will yield the number of shared peaks between them.
Similarly, the shared-peak counting problem between a (query)
MS/MS spectrum q and a matrix N constructed by stacking
all (say X) theoretically predicted spectra in the database can
be solved by applying a Matrix Vector multiplication. The
result of this operation would be a vector (c) containing the
number of shared peaks between the query spectrum and all
theoretical spectra in the database. However, it is interesting to
note that the sparse vectors (theoretical spectra) contained in
N will have 1’s at only particular dimensions in the matrix and

almost most of the columns in N will be all zeros resulting
in a sparse matrix. An example is illustrated as follows:

NX×M × qM×1 = cX×1

0 1 .. 0 .. 1
1 0 .. 1 .. 0
0 0 .. 0 .. 1

×


0
1
..
1

 =

3
7
4


B. Fragment-Ion Indexing Methods

Since the matrix N is sparse, conventional matrix represen-
tations cannot be efficiently used for N . Therefore, variants
of sparse matrix representations such as Compressed Sparse
Row (CSR) and Compressed Sparse Column (CSC) [40] are
used to construct an inverted index only storing the data about
the non-zero (NNZ) entries in the matrix with some overhead.
When constructing the fragment-ion index, it is typical to store
the information about (integer) ion-masses, ion-series, ion-
number, and spectra IDs for each fragment-ion in N . Further,
the two following query operations are supported by most
fragment-ion index data structures:
• rank(T,m): Returns the number of occurrences of

fragment-ion with mass m/z (m) in T .
• select(T,m, k): Returns the position of kth occurrence

of fragment ion with m/z (m) in T . Return all positions
if k is not specified.

The shared peak count algorithm can be translated into
a combination of above two operations and therefore, all
fragment-ion indexing methods strive to optimize the perfor-
mance of these operations. For instance, pFind-Alioth con-
structs a hash-map where the keys are ion-masses and values
are 12-byte entries per indexed fragment-ion to store ion-origin
information. MSFragger constructs a sorted-by-ion-mass array
containing 8-byte entries per indexed fragment-ion to store ion
mass and ion origin information. ProteoStorm filters the search
space from several proteomics databases using MSFragger-like
index for meta-proteomics application. SpecOMS first clusters
and buckets ions based on their masses and then constructs
FP-tree like data structure to encode the shared peak count
between spectra for classification. ANN-SoLo works with
spectral libraries and extracts ∼50 features (peaks) from each
spectrum in the library to construct an approximate nearest
neighbor index. The experimental spectra are first classified
to their appropriate nearest neighborhoods which are then
formally compared. PEAKS-DB filters the protein sequence
database using sequence-tagging and then uses shared-peak
counts as one of 9 similarity features for further database
filtration and formal scoring. Andromeda and OMSSA first
filter the search space based on precursor masses and then
compute shared peak score between an experimental spectrum
and all filtered peptides on the fly. X!Tandem, [41] and [36]
use a vectorized dot product approach and compute variants
of Cosine distance between vectors. OMSSA, X!Tandem, An-
dromeda do not construct any index and compute shared peaks
scores on the fly and use them as one of the similarity metric in

computation of peptide-to-spectrum similarity score. However,
the search engines including ProteoStorm, MSFragger, pFind-
Alioth, SpecOMS, ANN-SoLo are capable of unrestricted
search and therefore, employ index based methods for search
space filtration.

III. METHODS

In this section, we first discuss the data representation for
fragment-ion data followed by the construction method for the
proposed data structure. Then we discuss the algorithm for
counting shared peaks and peptide search using the compact
fragment-ion index.

A. Data Representation

We represent each theoretical MS/MS spectrum as an
ordered list of numbers where each number represents the
(integer) m/z of a predicted fragment-ion in the spectrum.
The ions in each generated spectrum Si are first ordered by
their ion-series (b/y) and then ordered by the fragment charge
and finally by their m/z’s. However, since the length of a
theoretical spectrum varies with the length of parent peptide
sequence, we cannot stack all theoretical spectra together to
form the matrix N . Therefore, we first group the database
peptide sequences by their length and then using all theoretical
spectra in each group, we construct an instance of matrix
N = [S1, S2, S3, ..., SX] where the fragment-ion m/z’s in each
Si lie within the range R(N) = 0 ≤ ij ≤ M − 1. The
construction of matrix N using X spectra of length n is shown
in Figure 1 can be written as:

N =

 i11 .. i1k .. i1n
ij1 .. ijk .. ijn
iX1 .. iXk .. iXn


where ijk corresponds to the m/z of kth fragment-ion in
the jth spectrum. To further simplify the ion indices in
N , we re-enumerate the ions to form a flattened list T =
[i0, i1, i2, ..., iXn−1] where original ion-positions can be com-
puted using information about N ’s dimensions i.e. dim(N) =
(X×n); remember that the ions are ordered in each spectrum
and the spectrum length is fixed per instance of N .

B. Compact Fragment-Ion Index Representation (CFIR)

We observed the information in above constructed list T
and found that the number of appearing unique ion m/z’s
(ion-masses) is extremely small as compared to the size of
list (Figure 2). Therefore, the ion-mass information which
typically consumes at least 4 bytes (integer) per fragment-ion
can be compressed into a compact representation in the index
as follows: We define a list A containing the indices of ions
in T given as A = [0, 1, 2, .., Xn − 1]. Next, we apply the
Stable KeyValue Sort operation on A using T as key to yield
two arrays: Ω and Λ respectively.

Ω,Λ = StableKeyV alueSort(T,A)

The list Λ now contains the locations of sorted fragment-ions
in T in the same order as they appear in T whereas Ω is

the sorted version of T . Now since we know that the T only
had a small number of unique ion-masses, its sorted version
(Ω) will contain large number of repeated entries at adjacent
indices(extremely low entropy). Therefore, we significantly
compress Ω into a list Ω′ by storing only the number of
occurrences (frequencies) of each appearing unique ion-mass.
i.e. Ω′[i] = {freq[i] ; i ε[0,M − 1]}. Hence, the new size
of |Ω′| = M << Xn = |Ω| where M is the maximum
appearing integer mass in T . Next, we successively accumulate
the frequencies in Ω′ to compute an equivalent list Ω′′ given
as Ω′′[i] = Ω′′[i− 1] + Ω′[i− 1]. The Ω′′ now corresponds to
the start positions in Λ for each indexed unique ion-mass.

Fig. 1. The ions in each spectrum are first ordered by the ion-series (b/y)
followed by fragment charge and finally by their m/z’s. The spectra from each
length group are then stacked in an instance of N .

The result of the above transformation on T is the two
arrays, Λ and Ω′′. The total size of the constructed index is
approximately equal to the size of T since |Λ| = Xn = |T |
whereas |Ω′′| = M << |T |. The memory footprint of the
index is ∼4-bytes per indexed ion. The same transformation
is applied on all instances of N to construct the complete
fragment-ion index. The CFIR index construction method is
shown in Figure 3 while an example is illustrated in Figure 4.

0 0.4 0.8 1.2 1.6 2 2.4

·109

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Total Number of Ions (Billions)

Pe
rc

en
ta

ge
U

ni
qu

e
Io

ns
(%

)

Fig. 2. The plot depicts that the ratio of unique ion masses to total number
of ions in a fragment-ion is extremely small for increasing size of index.

Fig. 3. The fragment ions and their positions in N are split into two arrays
T and A respectively. The StableKeyV alueSort operation is applied on
A using T as keys to obtain Λ and Ω respectively. The Ω array is then
compressed into an equivalent representation Ω′′.

Fig. 4. Illustrates an example of CFIR index construction for fragment-ion
data in the range [0, 4]. Notice that the output list Ω′′ contains only the bolded
black entries while the greyed ones are omitted.

C. Querying CFIR and Shared-Peak Counting

The shared-peaks between an experimental (query) spec-
trum and the indexed spectra can be counted by first locat-
ing occurrences of all query fragment-ion (peak) in T . The
occurrence locations in T are then mapped to their origin
spectrum IDs (osid) in N followed by counting the number
of times a theoretical spectrum’s ID (osid) shows up. The
shared peak counting algorithm can be translated in terms of
the two index query operations, rank and select, along with
backtrack and update score as shown in Algorithm 1. Next
we discuss how the two query operations performed using the
CFIR representation of fragment-ion index.
• rank(T,mz): The number of occurrences of fragment-

ion with m/z (mz) in T can be computed as Ω′′[mz +
1]− Ω′′[mz] which is done in O(1) time.

• select(T,mz, k): The kth occurrence of fragment-ion
with m/z (mz) in T can be located at Λ[Ω′′[mz] + k]
whereas all occurrences can be located at locations be-

tween: [Λ[Ω′′[mz]],
Λ[Ω′′[mz] + rank(T,mz) − 1]] which is also done in
O(1) time as well.

The Λ elements accessed in select are the ion-positions
(pos) in T , which can be mapped to origin-spectrum ID (osid),
ion-charge (ichg) and ion-series (iser) information in constant
time using the ion ordering information by the backtrack(pos)
function depicted in Algorithm 2. An example of rank and
select is illustrated in Figure 5. Note that the update score
function may have different implementations depending on
the employed scoring algorithm. In our implementation, we
adopted the MSFragger’s hyperscore function that computes
the similarity score between a spectral pair j and k given as:

hyperscore(j, k) = log(nb!ny!ΣIbΣIy)

where nb and ny correspond to the count of shared b- and y-
ions between the spectral pair while ΣIb and ΣIy represents
the sum of (normalized) intensities of the shared peaks. In
our implementation of update score, we use the query ion
information (qm), the matched origin spectrum’s ID (osid),
and the matched ion series information (iser) and update the
four individual components (nb, ny,ΣIb,ΣIy) of hyperscore
which are processed at the end of fragment-ion index look up
to obtain final results.

Algorithm 1: Shared Peak Counting
Data: Query fragment mass (qm)
Result: Shared Peak Scorecard
/* Get the range of occurrences of qm */

1 occs = rank(T, qm);
/* Iterate over the range */

2 for k in occs do
/* Locate each occurrence */

3 pos = select(T, qm, k);
/* Backtrack origin spectrum ID */

4 osid, inum, ichg, iser = backtrack(pos);
/* Update shared peak count */

5 update score(qm, osid, iser,+1);

IV. RESULTS

A. Memory Footprint

We compared the memory footprint results for CFIR
fragment-ion index against MSFragger, ANN-SoLo and
SpecOMS index for varying data sizes. The index size for
MSFragger and CFIR fragment-ion index was varied by in-
creasing the number and types of modifications incorporated
in the protein database. The index was constructed using
Human proteome database plus reverse decoys and cRAP
contaminants. The index size for ANN-SoLo was varied by
using spectral libraries of different sizes at the input. We used
the Human Orbitrap spectral library from ISB and Mouse
spectral library from NIST for our experiments with ANN-
SoLo. The index size for SpecOMS was varied by increasing

Fig. 5. Illustrates an example of rank and select for two integer query
fragment-ions with m/z 2 and 3.

Algorithm 2: Backtracking Algorithm
Data: Fragment-Ion position in T (pos), spectrum length

(len), max ion-charge in index (zmax)
Result: Fragment-Ion information in N
/* Assuming dim(N) = (X × len) */

/* Origin spectrum ID */

1 osid =
⌊
pos/len

⌋
;

/* ion-number in respective (b/y) ion series */

2 inum = (pos mod (len/2)) + 1;
/* ion-charge in origin spectrum */

3 ichg = ((inum− 1)/(len/2zmax) + 1);
/* ion-series in origin spectrum */

4 if (pos mod len) ≤ (len/2) then
5 iser = b ion;
6 else
7 iser = y ion;

8 return osid, inum, ichg, iser;

the number of input protein sequences obtained by sequen-
tially concatenating UniProt Homo sapiens (UP000005640),
Rabbit (UP000001811), Drosophilia (UP000000803) and Dog
(UP000002254) proteome databases plus reversed decoys and
cRAP contaminants at its input.

Further, since SpecOMS only works on Windows, all exper-
iments were run on a Windows machine equipped with 20GB
RAM. The memory footprint for MSFragger was recorded
from its execution logs since MSFragger usually splits its pep-
tide index into smaller chunks which are stored onto the disk
while the fragment index chunks are generated on the fly for
each peptide index chunk. The recorded results for MSFragger
do not include the disk memory for MSFragger Peptide Index.
The results show that the CFIR based fragment-ion index
consumes at most half the memory as MSFragger fragment-
ion index and orders-of-magnitude improvement over ANN-
SoLo and SpecOMS index as depicted in Figure 6. Further,

we extended the memory footprint results for MSFragger and
CFIR fragment-ion index for large data using a powerful server
machine equipped with 128GB of RAM as seen in Figure 7.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Index Size (Million Spectra)

M
em

or
y

(G
B

)

SpecOMS
ANN-SoLo
MSFragger
CFIR-Index

Fig. 6. The results show that CFIR data structure can index about 40 million
spectra within 20GB RAM outperforming existing techniques by a factor of
at least 2×.

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Index Size (Million Spectra)

M
em

or
y

(G
B

)

MSFragger
CFIR-Index

Fig. 7. Extended memory footprint results for MSFragger and CFIR fragment-
ion index show a consistent 2× improvement for CFIR over MSFragger.

B. Indexing Time

We compared the index construction time for CFIR-Index
against MSFragger, ANN-SoLo and SpecOMS. Figure 8
shows indexing speed for the three indexing methods with
varying index size. The results show that both MSFragger and
CFIR Index have the same time complexity i.e. O(N logN)
since the main operation performed is a (stable) sort in
both methods. However, since the index construction usually
consumes ∼5% of the total experiment time in normal cases,
it can be avoided in favor of much better memory efficiency.

Further, it can be seen that the time complexity for both
SpecOMS and ANN-SoLo varies exponentially since both
methods involve spectral clustering and tree/nearest-neighbor
construction which are highly compute intensive.

10−2 10−1 101 102
10−2

10−1

101

102

103

104

Index Size (Million Spectra)

In
de

xi
ng

Ti
m

e
(s

)

SpecOMS
ANN-SoLo
MSFragger
CFIR-Index

Fig. 8. The results for index construction time show that both MSFragger and
CFIR index exhibit same time complexity while SpecOMS and ANN-SoLo
exhibit exponential time complexity.

C. Peptide Search Time

We analyzed the peptide search time (shared peak counting
+ hyperscore computations) for CFIR index based algorithm
for varying MS/MS data and index sizes. We employed
the PRIDE Archive data set (PXD009072) containing about
305,000 MS/MS spectra searched against searched against
CFIR index constructed from UniProtKB Homo sapiens pro-
tein sequence database (UP000005640). The database diges-
tion settings were set to: tryptic digestion with 1 allowed
missed cleavages, peptide lengths from 6 to 40, peptide masses
from 100 to 5000amu, duplicate peptide sequences removed.
The variable modifications including Methionine oxidation,
gly-gly adducts on Cysteine and Lysine, and deamidation on
Asparagine and Glutamine residues were added successively
in the search keeping static cysteine Carbamidomethylation
modification in all experiments. The search settings were as
follows: resolution factor 1/r = 0.01Da, maximum ion charge
z = +3, peptide precursor mass tolerance ∆M = ±500Da,
and fragment mass tolerance ∆F = ±0.05Da. The results
depicted a roughly linear trend with increase in MS/MS data
confirming the constant time complexity for peptide search
speed as shown in Figure 9. Note that the peptide search time
cannot be perfectly linear because the number of potential
matches in database per query MS/MS spectrum are variable
but for large database and large index size the average matches
per query can be assumed to be roughly constant. Further,
we analyzed the speedup scalability with respect to increasing
number of cores and the results depicted a linear trend similar

to that of MSFragger and other leading fragment-ion index
based search engines as shown in Figure 10.

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.1

·105

0

30

60

90

120

150

Number of MS/MS spectra

Se
ar

ch
Ti

m
e

(s
)

10.53M
27.15M
51.2M

Fig. 9. The search time plot shows an almost linear trend with increasing
number query MS/MS spectra for given index size indicating near constant
search time per spectrum (slope).

0 4 8 12 16 20 24
0

4

8

12

16

20

24

Number of cores

Sp
ee

du
p

Ideal
10.53M
27.15M
51.2M

Fig. 10. The results show linear speedup scalability with number of cores
for peptide search time irrespective of CFIR-index size.

D. Performance Scalability

We analyzed the peptide search performance scalability
with increasing fragment-ion data. The experiments were
performed on a workstation machine equipped with 8 cores
× 2 sockets connected to 2 NUMA nodes (16 GB each).
The experiments were performed by searching the file:
FL0320 MSQ805 IBombik Stimb 6ul.ms2 (17,595 spectra)
from the PXD009072 data set against index of increasing sizes
constructed by successively incorporating post-translationally
modified theoretical peptides in the index. The index was
allowed to span across NUMA nodes while the number

of parallel cores used in each experiment was fixed to 8
(1 socket). The results in Figure 11 shows a performance
slowdown beyond index size of 16 million for MSFragger
(∼12% at 32 million size). The slowdown is caused by non-
local memory accessing across NUMA nodes as also discussed
in [10]. However, the CFIR-index based search shows optimal
performance up to index size of 32 million indicating superior
performance per compute unit (machine).

0 10 20 30 40
0

50

100

150

200

250

300

Index Size (Million Spectra)

Se
ar

ch
Ti

m
e

(s
)

MSFragger
CFIR-Index

Fig. 11. The plot show a slowdown for MSFragger beyond index size of 16
million due to NUMA while CFIR-Index performs optimally up to 32 million
index size

V. DISCUSSION

The results obtained for CFIR data structure indicate that
it reduces the memory footprint for the fragment-ion index
while performing comparably with state of the art in terms
of index construction and search speed. The results further
depict that the CFIR data structure based solution runs at
optimal performance for at least 2× the index size per compute
unit (NUMA node). The modern mass-spectrometry instru-
ments can produce data at astonishing speed and there has
been significant research effort in algorithmic development
for peptide identification. However, most of the effort has
not focused on improving algorithm performance scalability
and resource efficiency with increasing problem size. With
the advent of high-throughput mass spectrometers the peptide
search algorithms must utilize the compute, memory and net-
work resources from ubiquitous multicore and multiprocessor
architectures for optimal performance. Further, the results
shown in Figure 11 also conclusively show that the CFIR data
structure based solutions can significantly reduce the required
number of compute nodes (units), and therefore the cost for
data processing.

VI. CONCLUSION

In this paper, we presented a lossless and compact data
structure of fragment-ion index called Compact Fragment-
Ion Index Representation (CFIR). The proposed data structure

leverages the low entropy in ion-mass information to com-
press the size of constructed index. Our experiments show
that the proposed fragment-ion data structure outperforms all
existing fragment-ion indexing structures in terms of mem-
ory consumption while providing the essential index query
functions including rank and select at no additional compu-
tational costs. Our experimental results also indicate that the
CFIR fragment-ion index beats the all existing fragment-ion
structures by at least 2× in memory while exhibiting same
time complexity for data indexing and querying as existing
leading algorithms. The results also depict that the CFIR based
solutions can optimally process 100% more fragment-ion than
best existing data structure significantly reducing the required
resources and cost for data processing. Since the proposed data
structure allows efficient in-core analysis of more fragment-ion
data per unit memory, it will be instrumental in development
of high performance algorithmic solutions and software for
peptide identification in proteomics and proteogenomics.

FUNDING

This research was supported by National Science Founda-
tions (NSF) under Award Numbers NSF CRII CCF-1855441,
and NSF CAREER OAC-1925960. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Science Foundation.

REFERENCES

[1] J. K. Eng, B. C. Searle, K. R. Clauser, and D. L. Tabb, “A face in
the crowd: recognizing peptides through database search,” Molecular &
Cellular Proteomics, pp. mcp–R111, 2011.

[2] D. H. May, K. Tamura, and W. S. Noble, “Param-medic: A tool
for improving ms/ms database search yield by optimizing parameter
settings,” Journal of proteome research, vol. 16, no. 4, pp. 1817–1824,
2017.

[3] M. G. Awan and F. Saeed, “Ms-reduce: An ultrafast technique for
reduction of big mass spectrometry data for high-throughput processing,”
Bioinformatics, vol. 32, no. 10, pp. 1518–1526, 2016.

[4] Z.-F. e. Yuan, C. Liu, H.-P. Wang, R.-X. Sun, Y. Fu, J.-F. Zhang, L.-H.
Wang, H. Chi, Y. Li, L.-Y. Xiu, et al., “pparse: A method for accurate
determination of monoisotopic peaks in high-resolution mass spectra,”
Proteomics, vol. 12, no. 2, pp. 226–235, 2012.

[5] J. K. Eng, T. A. Jahan, and M. R. Hoopmann, “Comet: an open-
source ms/ms sequence database search tool,” Proteomics, vol. 13, no. 1,
pp. 22–24, 2013.

[6] W. Bittremieux, P. Meysman, W. S. Noble, and K. Laukens, “Fast
open modification spectral library searching through approximate nearest
neighbor indexing,” bioRxiv, p. 326173, 2018.

[7] M. David, G. Fertin, H. Rogniaux, and D. Tessier, “Specoms: a full open
modification search method performing all-to-all spectra comparisons
within minutes,” Journal of proteome research, vol. 16, no. 8, pp. 3030–
3038, 2017.

[8] J. Griss, Y. Perez-Riverol, S. Lewis, D. L. Tabb, J. A. Dianes, N. del
Toro, M. Rurik, M. Walzer, O. Kohlbacher, H. Hermjakob, et al., “Rec-
ognizing millions of consistently unidentified spectra across hundreds
of shotgun proteomics datasets,” Nature methods, vol. 13, no. 8, p. 651,
2016.

[9] J. M. Chick, D. Kolippakkam, D. P. Nusinow, B. Zhai, R. Rad, E. L.
Huttlin, and S. P. Gygi, “A mass-tolerant database search identifies a
large proportion of unassigned spectra in shotgun proteomics as modified
peptides,” Nature biotechnology, vol. 33, no. 7, p. 743, 2015.

[10] A. T. Kong, F. V. Leprevost, D. M. Avtonomov, D. Mellacheruvu,
and A. I. Nesvizhskii, “Msfragger: ultrafast and comprehensive peptide
identification in mass spectrometry–based proteomics,” Nature methods,
vol. 14, no. 5, p. 513, 2017.

[11] B. J. Diament and W. S. Noble, “Faster sequest searching for peptide
identification from tandem mass spectra,” Journal of proteome research,
vol. 10, no. 9, pp. 3871–3879, 2011.

[12] J. Zhang, L. Xin, B. Shan, W. Chen, M. Xie, D. Yuen, W. Zhang,
Z. Zhang, G. A. Lajoie, and B. Ma, “Peaks db: de novo sequencing
assisted database search for sensitive and accurate peptide identification,”
Molecular & Cellular Proteomics, vol. 11, no. 4, pp. M111–010587,
2012.

[13] A. Devabhaktuni, S. Lin, L. Zhang, K. Swaminathan, C. G. Gonzalez,
N. Olsson, S. M. Pearlman, K. Rawson, and J. E. Elias, “Taggraph
reveals vast protein modification landscapes from large tandem mass
spectrometry datasets,” Nature biotechnology, p. 1, 2019.

[14] H. Chi, C. Liu, H. Yang, W.-F. Zeng, L. Wu, W.-J. Zhou, X.-N. Niu,
Y.-H. Ding, Y. Zhang, R.-M. Wang, et al., “Open-pfind enables precise,
comprehensive and rapid peptide identification in shotgun proteomics,”
bioRxiv, p. 285395, 2018.

[15] D. H. Lundgren, D. K. Han, and J. K. Eng, “Protein identification
using turbosequest,” Current protocols in bioinformatics, vol. 10, no. 1,
pp. 13–3, 2005.

[16] J. K. Eng, B. Fischer, J. Grossmann, and M. J. MacCoss, “A fast
sequest cross correlation algorithm,” Journal of proteome research,
vol. 7, no. 10, pp. 4598–4602, 2008.

[17] C. Y. Park, A. A. Klammer, L. Kall, M. J. MacCoss, and W. S. Noble,
“Rapid and accurate peptide identification from tandem mass spectra,”
Journal of proteome research, vol. 7, no. 7, pp. 3022–3027, 2008.

[18] S. Kim and P. A. Pevzner, “Ms-gf+ makes progress towards a universal
database search tool for proteomics,” Nature communications, vol. 5,
p. 5277, 2014.

[19] L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M.
Maynard, X. Yang, W. Shi, and S. H. Bryant, “Open mass spectrometry
search algorithm,” Journal of proteome research, vol. 3, no. 5, pp. 958–
964, 2004.

[20] K. R. Clauser, P. Baker, and A. L. Burlingame, “Role of accurate mass
measurement (±10 ppm) in protein identification strategies employing
ms or ms/ms and database searching,” Analytical chemistry, vol. 71,
no. 14, pp. 2871–2882, 1999.

[21] D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cot-
trell, “Probability-based protein identification by searching sequence
databases using mass spectrometry data,” ELECTROPHORESIS: An
International Journal, vol. 20, no. 18, pp. 3551–3567, 1999.

[22] J. K. Eng, A. L. McCormack, and J. R. Yates, “An approach to correlate
tandem mass spectral data of peptides with amino acid sequences
in a protein database,” Journal of the American Society for Mass
Spectrometry, vol. 5, no. 11, pp. 976–989, 1994.

[23] R. Craig and R. C. Beavis, “Tandem: matching proteins with tandem
mass spectra,” Bioinformatics, vol. 20, no. 9, pp. 1466–1467, 2004.

[24] U. Keich, K. Tamura, and W. Noble, “An averaging strategy to reduce
variability in target-decoy estimates of false discovery rate,” bioRxiv,
p. 440594, 2018.

[25] M. Brosch, L. Yu, T. Hubbard, and J. Choudhary, “Accurate and sensitive
peptide identification with mascot percolator,” Journal of proteome
research, vol. 8, no. 6, pp. 3176–3181, 2009.

[26] S. McIlwain, K. Tamura, A. Kertesz-Farkas, C. E. Grant, B. Diament,
B. Frewen, J. J. Howbert, M. R. Hoopmann, L. Käll, J. K. Eng, et al.,
“Crux: rapid open source protein tandem mass spectrometry analysis,”
Journal of proteome research, vol. 13, no. 10, pp. 4488–4491, 2014.

[27] J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen,
and M. Mann, “Andromeda: a peptide search engine integrated into the
maxquant environment,” Journal of proteome research, vol. 10, no. 4,
pp. 1794–1805, 2011.

[28] M. Mann and M. Wilm, “Error-tolerant identification of peptides in
sequence databases by peptide sequence tags,” Analytical chemistry,
vol. 66, no. 24, pp. 4390–4399, 1994.

[29] D. L. Tabb, A. Saraf, and J. R. Yates, “Gutentag: high-throughput
sequence tagging via an empirically derived fragmentation model,”
Analytical chemistry, vol. 75, no. 23, pp. 6415–6421, 2003.

[30] S. Dasari, M. C. Chambers, S. G. Codreanu, D. C. Liebler, B. C. Collins,
S. R. Pennington, W. M. Gallagher, and D. L. Tabb, “Sequence tag-
ging reveals unexpected modifications in toxicoproteomics,” Chemical
research in toxicology, vol. 24, no. 2, pp. 204–216, 2011.

[31] S. Dasari, M. C. Chambers, R. J. Slebos, L. J. Zimmerman, A.-J. L. Ham,
and D. L. Tabb, “Tagrecon: high-throughput mutation identification
through sequence tagging,” Journal of proteome research, vol. 9, no. 4,
pp. 1716–1726, 2010.

[32] B. C. Searle, S. Dasari, P. A. Wilmarth, M. Turner, A. P. Reddy,
L. L. David, and S. R. Nagalla, “Identification of protein modifications
using ms/ms de novo sequencing and the opensea alignment algorithm,”
Journal of proteome research, vol. 4, no. 2, pp. 546–554, 2005.

[33] S. Tanner, H. Shu, A. Frank, L.-C. Wang, E. Zandi, M. Mumby, P. A.
Pevzner, and V. Bafna, “Inspect: identification of posttranslationally
modified peptides from tandem mass spectra,” Analytical chemistry,
vol. 77, no. 14, pp. 4626–4639, 2005.

[34] W. H. Tang, B. R. Halpern, I. V. Shilov, S. L. Seymour, S. P. Keating,
A. Loboda, A. A. Patel, D. A. Schaeffer, and L. M. Nuwaysir, “Dis-
covering known and unanticipated protein modifications using ms/ms
database searching,” Analytical Chemistry, vol. 77, no. 13, pp. 3931–
3946, 2005.

[35] D. Beyter, M. S. Lin, Y. Yu, R. Pieper, and V. Bafna, “Proteostorm:
An ultrafast metaproteomics database search framework,” Cell systems,
vol. 7, no. 4, pp. 463–467, 2018.

[36] S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince,
W. S. Willard, W. Xu, E. M. Marcotte, and D. P. Miranker, “A fast
coarse filtering method for peptide identification by mass spectrometry,”
Bioinformatics, vol. 22, no. 12, pp. 1524–1531, 2006.

[37] M. Bern, Y. Cai, and D. Goldberg, “Lookup peaks: a hybrid of de novo
sequencing and database search for protein identification by tandem
mass spectrometry,” Analytical chemistry, vol. 79, no. 4, pp. 1393–1400,
2007.

[38] H. Chi, K. He, B. Yang, Z. Chen, R.-X. Sun, S.-B. Fan, K. Zhang,
C. Liu, Z.-F. Yuan, Q.-H. Wang, et al., “pfind–alioth: A novel unre-
stricted database search algorithm to improve the interpretation of high-
resolution ms/ms data,” Journal of proteomics, vol. 125, pp. 89–97,
2015.

[39] Y. Li, H. Chi, L.-H. Wang, H.-P. Wang, Y. Fu, Z.-F. Yuan, S.-J. Li, Y.-S.
Liu, R.-X. Sun, R. Zeng, et al., “Speeding up tandem mass spectrometry
based database searching by peptide and spectrum indexing,” Rapid
Communications in Mass Spectrometry, vol. 24, no. 6, pp. 807–814,
2010.

[40] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–11, IEEE, 2008.

[41] D. L. Tabb, M. J. MacCoss, C. C. Wu, S. D. Anderson, and J. R. Yates,
“Similarity among tandem mass spectra from proteomic experiments:
detection, significance, and utility,” Analytical chemistry, vol. 75, no. 10,
pp. 2470–2477, 2003.

