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( 57 ) ABSTRACT 
Systems and methods for measuring cross - modal similarity 
between mass spectra and peptides are provided . A deep 
learning network can be used and , by training on a variety 
of labeled spectra , the network can embed both spectra and 
peptides onto a Euclidean subspace where the similarity is 
measured by the L2 distance between different points . The 
network can be trained on a novel loss function , which can 
calculate the gradients from sextuplets of data points . 
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SYSTEMS AND METHODS FOR sextuplet can include a positive pair ( spectrum , label pep 
MEASURING SIMILARITY BETWEEN MASS tide ) and four negative examples . Training the network this 

SPECTRA AND PEPTIDES way can result in optimal performance . 
In an embodiment , a system for measuring cross - modal 

GOVERNMENT SUPPORT 5 similarity between mass spectra and peptides can comprise 
a processor and a ( non - transitory ) machine - readable 

This invention was made with government support under medium in operable communication with the processor and 
1R01GM134384 awarded by National Institute of Health having instructions stored thereon that , when executed by 
( NIH ) . The government has certain rights in the invention . the processor , perform the following steps : receiving a set of 

10 mass spectra data and a set of peptide data into a network 
BACKGROUND comprising a spectral sub - network ( SSN ) and a peptide 

sub - network ( PSN ) ; inputting the set of mass spectra data 
Mass spectrometry ( MS ) proteomics data is typically into the SSN , the SSN comprising two fully connected 

identified using database search algorithms purely based on hidden layers and an L2 normalization output layer ; input 
numerical techniques ( see also FIG . 1 ) . These numerical 15 ting the set of peptide data into the PSN , the PSN comprising 
techniques operate by comparing the experimental spectra to one bi - directional long short - term memory ( Bi - LSTM ) layer 
the simulated spectra generated from theoretical peptides and two fully connected layers ; processing the set of mass 
using a simple simulator . The experimental spectra are spectra data in the SSN and embedding it on a surface of a 
matched against the theoretical ones using one of many unit hypersphere in a Euclidean subspace ; processing the set 
available heuristic scoring - functions including dot product , 20 of peptide data in the PSN and embedding it on the surface 
shared peak count , and ion matches . Other peptide identi of the unit hypersphere in the Euclidean subspace ; and 
fication techniques , such a de novo algorithms , also deduce matching mass spectra from the set of mass spectra data with 
peptides directly from experimental spectra with varying peptides from the set of peptide data , using an L2 - distance 
degrees of success . based similarity measure . The instructions when executed 
No single related art heuristic from database search tech- 25 can further train the network on a loss function that calcu 

niques can claim being the most accurate strategy . Compu lates gradients from sextuplets of data points of the set of 
tational techniques for identification of peptides using data- mass spectra data , the set of peptide data , or both . The 
base search exist ( see also FIG . 2 ) , as do de novo algorithms . training of the network can comprise calculating a loss value 
However , peptide identification problems are well - known by generating the sextuplets after each forward pass , and 
and prevalent , including but not limited to misidentifications 30 each sextuplet can comprise a positive pair ( Q , P ) , a negative 
or no identifications for peptides , false discovery rate , and pair ( Qx , Px ) , for Q , and a negative pair ( Qx , PM ) p for P , 
inconsistencies between different search engines . De novo where Q is an anchor spectrum and P is a positive peptide . 
algorithms have lower average accuracy ( < 35 % ) than data Each negative pair can be selected via an online hardest 
base search algorithms ( 30-80 % ) . Lack of quality assess negative mining process , in which negative spectra and 
ment benchmarks makes the accuracy exhibited from these 35 peptides that are closest to Q and P are selected for a given 
database search tools highly dependent on the data . Two batch after each forward pass . The PSN can further comprise 
major sources of heuristic errors that are introduced in the an embedding layer before the Bi - LSTM layer , and the 
numerical database search algorithms are the way in which embedding layer can use a vocabulary size of 20 or 30 to 
the peptide deduction takes place ( i.e. , simulation of the construct embeddings . The Bi - LSTM layer can have a 
spectra ( from peptides ) ) and the peptide spectrum match 40 hidden dimension of 512 , and the two fully connected layers 
scoring - function . The simplistic and a priori nature of the of the PSN can be after the Bi - LSTM layer and / or can 
scoring mechanism neglects the MS data ( and the database ) comprise a first layer with a size of 1024x512 and / or a 
that are under consideration , leading to variable quality second layer with a size of 512x256 . The two fully con 
peptide deductions . nected hidden layers of the SSN can comprise a first layer 

45 with a size of 80,000x1024 and / or a second layer with a size 
BRIEF SUMMARY of 1024x256 . The two fully connected hidden layers of the 

SSN can utilize a rectified linear activation function ( ReLU ) . 
Embodiments of the subject invention provide novel and The SSN can further comprise a dropout mechanism with a 

advantageous systems and methods for measuring cross- probability of 0.3 after a first layer of the two fully connected 
modal similarity between mass spectra and peptides ( e.g. , 50 hidden layers of the SSN and before a second layer of the 
for peptide deduction ) . A deep learning architecture and / or two fully connected hidden layers of the SSN . The two fully 
network ( e.g. , a deep neural network ) can be used for connected layers of the PSN can utilize a ReLU . The PSN 
measuring the cross - modal similarity between spectra and can further comprise : a first dropout mechanism with a first 
peptides . By training on a variety of labeled spectra , the probability of 0.3 after the Bi - LSTM layer and before a first 
network can embed both spectra and peptides onto a Euclid- 55 layer of the two fully connected layers of the PSN ; and / or a 
ean subspace where the similarity is measured by the L2 second dropout mechanism with a second probability of 0.3 
distance between different points , where the L2 distance d after the first layer of the two fully connected layers of the 
between two vectors p and q of length n is given by PSN and before a second layer of the two fully connected 

layers of the PSN . 
In another embodiment , a method for measuring cross 

modal similarity between mass spectra and peptides can 
( P ; – 9 ; ) 2 comprise : receiving ( e.g. , by a processor ) a set of mass 

spectra data and a set of peptide data into a network 
comprising an SSN and a PSN ; inputting ( e.g. , by the 

The network can be trained on a novel loss function ( which 65 processor ) the set of mass spectra data into the SSN , the SSN 
can be referred to as a SNAP - loss function ) , which can comprising two fully connected hidden layers and an L2 
calculate the gradients from sextuplets of data points . Each normalization output layer ; inputting ( e.g. , by the processor ) 
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the set of peptide data into the PSN , the PSN comprising one of the subject invention can learn same - sized embeddings 
Bi - LSTM layer and two fully connected layers ; processing for both peptides and spectra by projecting them to a shared 
( e.g. , by the processor ) the set of mass spectra data in the Euclidean space . 
SSN and embedding it on a surface of a unit hypersphere in FIG . 4 shows a schematic view of a deep similarity 
a Euclidean subspace ; processing ( e.g. , by the processor ) the 5 network for proteomics , according to an embodiment of the 
set of peptide data in the PSN and embedding it on the subject invention , which can be referred to as SpeCollate . 
surface of the unit hypersphere in the Euclidean subspace ; The spectra Q can be passed to a spectrum sub - network 
and matching ( e.g. , by the processor ) mass spectra from the ( SSN ) in the form of sparse one - hot normalized represen 
set of mass spectra data with peptides from the set of peptide tation . The positive ( P ) and negative ( N ) peptides can be 
data , using an L2 - distance - based similarity measure . The passed to a peptide sub - network ( PSN ) one by one in a 
method can further comprise training ( e.g. , by the processor ) forward direction and / or a backward direction . 
the network on a loss function that calculates gradients from FIG . 5 shows a schematic view of online sextuplet mining 
sextuplets of data points of the set of mass spectra data , the for a loss function , which can be referred to as SNAP - loss . 
set of peptide data , or both . The training of the network can At each batch iteration , four negatives can be selected that 
comprise calculating a loss value by generating the sextu- are closest to either q or p . The gradient update can move the 
plets after each forward pass , and each sextuplet can com- negatives far away , and a new set of negatives can be 
prise a positive pair ( Q , P ) , a negative pair ( Qx , PN ) for Q , selected during the next iteration , and so on . This process 
and a negative pair ( Qv , Py ) p for P , where Q is an anchor can make sure the network learns on the hardest examples 
spectrum and P is a positive peptide . Each negative pair can 20 for optimum training . 
be selected via an online hardest negative mining process , in FIG . 6A shows a plot of accuracy ( in percentage ( % ) ) 
which negative spectra and peptides that are closest to Q and versus epoch , showing train / test accuracy . The ( orange ) 
P are selected for a given batch after each forward pass . The curve with the higher values at each epoch is for the testing 
PSN can further comprise an embedding layer before the accuracy ; and the ( blue ) curve with the lower values at each 
Bi - LSTM layer , and the embedding layer can use a vocabu- 25 epoch is for training accuracy . 
lary size of 20 or 30 to construct embeddings . The Bi - LSTM FIG . 6B shows a plot of loss versus epoch , showing 
layer can have a hidden dimension of 512 , and the two fully train / test loss . The ( orange ) curve with the lower values at 
connected layers of the PSN can be after the Bi - LSTM layer each epoch is for the testing loss ; and the ( blue ) curve with 
and / or can comprise a first layer with a size of 1024x512 the higher values at each epoch is for training loss . 
and / or a second layer with a size of 512x256 . The two fully FIG . 7 shows a plot of precursor identification rate ( PIR ) 
connected hidden layers of the SSN can comprise a first ( in % ) versus precursor window ( in Daltons ( Da ) ) , showing 
layer with a size of 80,000x1024 and / or a second layer with the PIR for a test dataset . PIR was measured for SpeCollate , 
a size of 1024x256 . The two fully connected hidden layers XCorr , and Hyperscore using +/- 0.5 Da and +/- 250 Da 
of the SSN can utilize a ReLU . The SSN can further precursor mass tolerance windows . SpeCollate performed 
comprise a dropout mechanism with a probability of 0.3 comparable to XCorr and Hyperscore for the +/- 0.5 Da 
after a first layer of the two fully connected hidden layers of window while SpeCollate significantly outperformed XCorr 
the SSN and before a second layer of the two fully connected and stayed on par with Hyperscore for the +/- 250 Da 
hidden layers of the SSN . The two fully connected layers of window . The left - most ( blue ) bar at both 0.5 Da and 250 Da 
the PSN can utilize a ReLU . The PSN can further comprise : 40 is for an embodiment of the subject invention ( labeled as 
a first dropout mechanism with a first probability of 0.3 after “ SpeCollate ” in FIG . 7 ) ; the middle ( orange ) bar at both 0.5 
the Bi - LSTM layer and before a first layer of the two fully Da and 250 Da is for XCorr ; and the right - most ( green ) bar 
connected layers of the PSN ; and / or a second dropout at both 0.5 Da and 250 Da is for Hyperscore . 
mechanism with a second probability of 0.3 after the first FIG . 8A shows a plot of true positive rate versus false 
layer of the two fully connected layers of the PSN and before 45 positive rate ( 1 - specificity ) , showing the receiver operating 
a second layer of the two fully connected layers of the PSN . characteristic ( ROC ) curve for a closed search using 

SpeCollate , XCorr , and Hyperscore . The solid ( green ) curve 
BRIEF DESCRIPTION OF DRAWINGS is for an embodiment of the subject invention ( labeled as 

“ SpeCollate ” in FIG . 8A ) ; the dotted ( orange ) curve is for 
FIG . 1 shows a schematic view of a process of generating 50 Hyperscore ; and the dashed / dotted ( blue ) curve is for XCorr . 

tandem mass spectrometry ( MS / MS ) spectra from a protein SpeCollate performed the best of the three ( +/- 0.5 Da 
mixture using mass spectrometry ( MS ) analysis . Protein in precursor mass tolerance ) . 
the mixture are broken into peptides using an enzyme ( e.g. , FIG . 8B shows a plot of precision versus recall for a 
trypsin ) , which breaks the protein strings at K and R bases closed search using SpeCollate , XCorr , and Hyperscore . The 
generating peptides of varying sizes . This peptide mixture is 55 ( green ) curve with the highest precision value at recall = 0.2 
then refined , and peptides are moved through a mass spec- is for an embodiment of the subject invention ( labeled as 
trometer , which generates an MS / MS spectrum for each “ SpeCollate ” in FIG . 8B ) ; the ( orange ) curve with the 
different peptide . second - highest precision value at recall = 0.2 is for Hyper 
FIG . 2 shows a schematic view of proteomics flow . In score ; and the ( blue ) curve with the lowest precision value 

silico digestion of the protein database is performed to 60 at recall = 0.2 is for XCorr . SpeCollate performed the best of 
generate peptides . These peptides are then converted to the the three ( +/- 0.5 Da precursor mass tolerance ) . 
theoretical spectra and compared against the experimental FIG . 9A shows a plot of true positive rate versus false 
spectra . positive rate ( 1 - specificity ) , showing the receiver operating 
FIG . 3 shows a schematic view of space transition meth- characteristic ( ROC ) curve for an open search using SpeCol 

ods de novo and database search that try to transform one 65 late , XCorr , and Hyperscore . The solid ( green ) curve is for 
space to another . This is prone to error and uncertainty as a an embodiment of the subject invention ( labeled as “ SpeCol 
lot of information can be missed . In contrast , embodiments late ” in FIG . 9A ) ; the dotted ( orange ) curve is for Hyper 
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score ; and the dashed / dotted ( blue ) curve is for XCorr . can have a size of , for example , 1024x256 , though embodi 
SpeCollate performed the best of the three ( +/- 250 Da ments are not limited thereto . Both layers can be activated 
precursor mass tolerance ) . by the rectified linear activation function ( ReLU ) , and the 

FIG . 9B shows a plot of precision versus recall for a output of the last layer can be passed through an L2 
closed search using SpeCollate , XCorr , and Hyperscore . The 5 normalization layer so that embeddings lie on the surface of 
solid ( green ) curve with the highest precision value at the unit hypersphere . Dropout ( e.g. , with a probability of 
recall 0.2 is for an embodiment of the subject invention 0.3 ) can be used after the first layer . The input spectra to the 
( labeled as “ SpeCollate ” in FIG . 9B ) ; the dotted ( orange ) SSN can be in the form of dense vectors of normalized 
curve with the second - highest precision value at recall = 0.2 intensities such that the intensity value at each m / z can be 
is for Hyperscore ; and the dashed / dotted ( blue ) curve with 10 placed in an appropriate bin ( e.g. , a bin of width 0.1 Da ) . The 
the lowest precision value at recall = 0.2 is for XCorr . bin index for a given m / z can be calculated by , for example , 
SpeCollate performed the best of the three ( +/- 250 Da rounding m / z * 10 to the nearest integer . In this format , the 
precursor mass tolerance ) . maximum m / z is limited to 8,000 . 

The PSN can include a bidirectional long short - term 
DETAILED DESCRIPTION 15 memory network ( Bi - LSTM ) , followed by two fully con 

nected layers ; the first fully connected layer can have a size 
Embodiments of the subject invention provide novel and of , for example , 1024x512 , though embodiments are not 

advantageous systems and methods for measuring cross- limited thereto ; and the second fully connected layer can 
modal similarity between mass spectra and peptides ( e.g. , have a size of , for example , 512x256 , though embodiments 
for peptide deduction ) . A deep learning architecture and / or 20 are not limited thereto . The Bi - LSTM layer can have a 
network ( e.g. , a deep neural network ) , which can be referred hidden dimension ( e.g. , of 512 ) , and the output from the 
to herein as SpeCollate , can be used for measuring the forward and the backward pass can be concatenated to get a 
cross - modal similarity between spectra and peptides . By vector ( e.g. , a 1024 dimension vector ) . The Bi - LSTM layer 
training on a variety of labeled spectra , the network can can be preceded by an embedding layer ( e.g. , with an 
embed both spectra and peptides onto a Euclidean subspace 25 embedding size of 256 or 512 ) . This layer can embed each 
where the similarity is measured by the L2 distance between amino acid in the peptide sequence in an array ( e.g. , in a 256 
different points , where the L2 distance d between two dimension array ) . A vocabulary size can be utilized ( e.g. , a 
vectors ? q of length n is given by vocabulary size of 30 can be used to encode 20 amino acids , 

blank space , and 9 modifications ) . ReLU activation can be 
30 used for both fully connected layers , and dropout ( e.g. , with 

a probability of 0.3 ) can be used after the Bi - LSTM and the 
d = ? ( P ; – q ; ) ? . first fully connected layer . L2 normalization can be used at 

the output of the PSN so that the embedded vectors lie at the 
surface of a unit hypersphere . 

The network can be trained on a novel loss function ( which 35 In many embodiments , the network can be trained using 
can be referred to as a SNAP - loss function ) , which can a novel , custom - designed loss function ( SNAP - loss func 
calculate the gradients from sextuplets of data points . Each tion ) , which can calculate the loss value on sextuplets of data 
sextuplet can include a positive pair ( spectrum , label pep- points . The sextuplets can be generated online after each 
tide ) and four negative examples . Training the network this forward pass of the batch and can include a positive pair 
way can result in optimal performanc 40 ( anchor mass spectrum and the peptide label ) and four 

Related art peptide spectrum matching / scoring algorithms negative examples ( e.g. , can include exactly one positive 
rely on intermediate approximations to compare mass spec- pair and four negative examples ) . The four negative 
tra against peptides . These steps include simulating theo- examples can include two spectra and two peptides , such 
retical spectra from peptides and then comparing theoretical that one spectrum and peptide is closest to the anchor 
spectra against mass spectra using heuristic scoring func- 45 spectrum and one spectrum and peptide is closest to the label 
tions . The simulation step tries to approximate the mass peptide among all the negative examples in the batch . The 
spectrometry ( MS ) process , which results in significant loss can be calculated by taking the difference of the positive 
information loss , introducing sources of error . Similarly , the distance from all four negative distances and adding the 
scoring functions are not appropriately designed to provide results . Here , the positive distance can be defined as the 
an optimum match ; rather , only empirical evidence is given 50 squared L2 distance between the anchor spectrum and the 
in reference to their utility . These scoring functions provide peptide label while the negative distance can be defined as 
sub - optimal performance . Embodiments of the subject the distance between the anchor spectrum / label peptide and 
invention overcome these shortcomings by learning the one of the negative examples . The total loss over all training 
similarity function between peptides and mass spectra examples in a batch can be used , and a margin value of 0.2 
directly from the data without the need to simulate spectra 55 can be added to the difference calculation of each negative 
or design a scoring function . This goal is achieved by a novel example within a sextuplet to avoid situations where the 
loss function that ensures optimal training performance positive and the negative distances are similar . Selecting the 
helps achieve this goal . Comparison across a variety of data hardest negative examples can ensure the selection of the 
points shows the superiority of SpeCollate compared to hardest examples so that the training process is swift and 
related art scoring functions ( e.g. , XCorr and Hyperscore ) . 60 optimal . An optimizer ( e.g. , Adam optimizer ) can be used 

SpeCollate can include two sub - networks , which can be for the training , e.g. , with a learning rate of 0.0001 and a 
referred to as a spectrum sub - network ( SSN ) and a peptide weight decay of 0.00001 . 
sub - network ( PSN ) . The SSN can process spectra , and the Two major shortcomings in related art systems and meth 
PSN can process peptides . ods are that : the simulation step tries to approximate the 

The SSN can include two fully connected layers . The first 65 stochastic mass spectrometry process and as a result , incurs 
layer can have a size of , for example , 80,000x1024 , though numerous inaccuracies ; and the heuristic scoring functions 
embodiments are not limited thereto ; and the second layer are not designed by strong scientific backing , and instead 
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only empirical evaluation is provided for their accuracies most optimal results . Different fragmentation patterns yield 
indicating potential sub - optimal performance . Embodiments different types of ions that can assist or resist peptide 
of the subject invention overcome these shortcomings by spectrum matching . The comparison of complex fragmen 
eliminating these limiting factors and directly comparing tation spectra is not straightforward and leads to unreliable 
mass spectra and peptides . A main challenge overcome by 5 outcomes . SpeCollate overcomes this problem by learning a 
embodiments of the subject invention is comparing peptide multimodal similarity ( or scoring ) function by training on 
strings against numerical arrays of mass spectra , which is highly accurate data . By processing data from different 
addressed by the deep similarity network with two different modalities using different types of networks ( i.e. , spectra 
branches ( SSN and PSN ) , in which one branch processes using SSN and peptides using PSN ) , it is able to extract the 
mass spectra and the other processes the peptides . This is 10 most useful features needed for proper matching . Also , the 
done in such a way that the resultant output of both branches novel SNAP - loss objective function allows the network to 
is in the form of vectors that can be easily compared . Related learn the optimal features and generalize for much broader 
art loss functions only provide a limited training perfor- data sets . 
mance due to the dual nature of the data in embodiments of Proteomics is a big - data field presenting newer challenges 
the subject invention . This issue can be overcome by using 15 in terms of data handling and search space reduction . In 
the novel loss function ( SNAP - loss ) of embodiments of the meta - proteomics and proteogenomics , the search space can 
subject invention , which optimizes the training by taking reach multiple terabytes in size . The problem becomes even 
into account multiple data points from both data modalities . worse for related art database search engines because the 

Peptides and their corresponding tandem mass spectrom- theoretical spectra database size grows multiple times larger 
etry ( MS / MS ) spectra lie in vastly distinct spaces . Peptides 20 than the peptide database due to generating different theo 
include a string of ( typically twenty ) alphabets ( each repre- retical spectra for each charge and modification per peptide . 
senting an amino acid ) while spectra are a series of floating In embodiments of the subject invention , as SpeCollate 
point numbers generated by complex and a rather stochastic processes the original peptide strings and learns the simi 
fragmentation process . Transitioning in between spaces can larity function from the labeled data , the training process can 
only hope to approximate the counterpart projection as 25 be designed in such a way that different charged spectra 
manifested by the existing techniques . De novo projects match to the original peptide string without the need to 
spectra onto a sub - peptide - space but with underwhelming consider each charge separately . In this way , the peptide 
accuracy as the spectra are mostly noisy and necessary database size is reduced by orders of magnitudes in embodi 
information is missing . Similarly , in peptide - spectrum scor- ments of the subject invention , improving the search speed 
ing methods , peptides are projected onto sub - spectral - space 30 and reducing false negatives due to search space inflation . 
and the similarity is measured by projecting the experimen- When learning a similarity ( or scoring ) function , it would 
tal spectra onto the same subspace ( dot - product ) for com- be ideal to retain all the features that improve the similarity 
parison , as shown in FIG . 3. Although the database search measure while abolishing the useless ones . SpeCollate 
process is relatively more accurate than related art de novo approaches this solution by projecting both peptides and 
algorithms , the quality of the output is contingent on the 35 spectra onto a shared Euclidean space . This is accomplished 
quality of the experimental and projected theoretical spectra . by learning embeddings of equal size for both spectra and 
Also , simulation of stochastic processes is prone to errors . peptides — in such a way that their similarity is directly 
Therefore , a need exists for eliminating the problems proportional to L2 distance in the resultant Euclidean space . 
involved in space transitioning . This addresses both above mentioned fundamental problems 

Related art database search tools typically provide a 40 by finding a middle ground between two extremes ( de novo 
simulator to generate spectra , containing b and y peaks and database search ) and simplifying the comparison . Deep 
( sometimes a , c , x , and z ) from the theoretical peptides . learning can be used , in embodiments of the subject inven 
Some simulators also provide options to generate peaks with tion , to learn the similarity function by reducing the spectra 
different neutral losses ( NH3 , H2O ) , immonium ions , and and peptides to a lower dimension embedded feature vec 
isotope ions . These simulators incur numerous deficiencies 45 tors . By using a combination of different networks , the exact 
due the inherent complexities of the MS process causing features are extracted that are required to confidently assign 
misidentification of multiple features . These include unac- spectra to their corresponding peptides . 
counted peaks , missing peaks , falsely - identified true and Embodiments of the subject invention utilize a similarity 
noisy peaks , peak intensities , neutral losses , isotopic peaks , network ( SpeCollate ) and / or novel loss function ( SNAP 
and noise characteristics . As a result , the simulated spectra 50 loss ) to learn a similarity function for peptide - spectrum 
only manage to span a sub - space of experimental spectra matches . A fixed sized embedding of variable length experi 
( see also FIG . 3 ) . One of the advantages of embodiments of mental spectra can be learned , as can peptide strings , in such 
the subject invention is eliminating the need of using a a way that a given spectrum and its corresponding peptide 
simulator as an intermediate step in the peptide - spectrum are projected close to each other in the shared subspace . The 
match process . Instead , the experimental spectra and their 55 network can include two sub - networks- an SSN including 
corresponding theoretical peptide string can be matched ( or consisting of ) two fully connected layers and a PSN 
directly ( without the use of a simulator as an intermediate including ( or consisting of ) one bi - directional LSTM fol 
step ) by learning the similarity function between them from lowed by two fully connected layers . 
huge sets of labeled data ( e.g. , labeled data available in , for The training process can take two sets of data points as 
example , National Institute of Standards and Technology 60 inputs ( i.e. , the sparse spectrum vectors and encoded peptide 
( NIST ) and MassIVE ( massive.ucsd.edu/ ) . strings can be taken as inputs ) . The loss value can be 

Although simulators somewhat help improve the database calculated generating sextuplets , after each forward pass , 
search process in related art systems and methods , they only including ( or consisting of ) a positive pair ( Q , P ) , a negative 
address half of the challenge ( i.e. , the simulation of spectra ) , pair ( Qv , Px ) for Q , and a negative pair ( Qv , Px ) p for P , 
while the heuristic based scoring function is still the limiting 65 where Q is the anchor spectrum and Pis the positive peptide . 
factor . The choice of scoring function is not backed up by The negative pairs can be selected via online hardest nega 
any strong scientific reasoning and often does not yield the tive mining to make the training process more efficient and 
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faster . In this process , the negative spectra and peptides that Spectra can be preprocessed into sparse vectors contain 
are closest to Q and P are selected for a given batch after ing intensity values that are normalized to zero mean and 
each forward pass . A number of other features can also be unit variance . The charge values can be appended to the 
used to generalize the training of the network through sparse vectors in one - hot encoded form . Peptides strings can 
multitask - learning , including the fragment ion sequences in 5 be padded with the zero character to the length of 64 before 
the spectrum , the precursor mass , charge state , fragmenta- feeding to the PSN . Next , the dataset can be split into 
tion process , and / or others . In addition to improving the disjoint training and testing subsets of size 80 % and 20 % , 
similarity metrics , the learned embeddings work well for respectively . The training set can be further split into batches 
dimensionality reduction by projecting the original spectrum of 1024 samples each . The training for the examples was 
onto a smaller subspace as well as conserving the features performed using the pytorch framework 1.6 running on 
that matter the most for similarity . Moreover , the L2 - dis- python 3.7.4 . For fast training , the training process was 
tance - based similarity measure is flexible enough to match performed on NVIDIA TITAN Xp GPUs with 12 GB of 
multiple modified spectra to their original ( unmodified ) memory . 
peptides . This is obtained by generating training data con 
taining positive pairs including a modified spectrum and the TABLE 1 
corresponding unmodified peptide . Details of training dataset FIG . 4 shows a schematic view of a deep similarity 
network for proteomics ( SpeCollate ) , according to an Parameters 
embodiment of the subject invention . Referring to FIG . 4 , Training Samples the spectra Q can be passed to the SSN in the form of sparse Charge 2 
one - hot normalized representation . The positive ( P ) and Charge 3 
negative ( N ) peptides can be passed to the PSN one by one Charge 4 

Other Charges in a forward direction and / or a backward direction . Unmodified Samples 4.3M The SSN branch of the network processes spectra and 25 Modified Samples 
embeds them on to the surface of a unit hypersphere in a Max Charge 
Euclidean subspace ( IR256 ) . The SSN can include ( or consist Number of Species 
of ) two fully connected hidden layers and an L2 normaliza 
tion output layer . The first fully connected layer can have a The training process can begin with a forward pass 
size of , for example , 80,000x1024 , and the second fully 30 batch ( e.g. , a subset of 1024 data points ) containing experi 
connected layer can have a size of , for example , 1024x256 . mental spectra and their corresponding ( positive ) peptides The input layer can be of size 80,000 , which takes spectra as through the SSN and PSN , respectively . At this point , the input in the form of sparse vectors with intensity values dataset doesn't include sextuplets as the negative examples normalized to zero mean and unit variance and mass binning haven't been selected yet . Once a batch is forward passed of 0.1 Da . Both hidden layers can use ReLU as the activation 35 
function . A dropout mechanism ( e.g. , with a probability through the network the four negative examples for each 
value of 0.3 ) can be used after the first hidden layer to avoid positive pair ( q , EQ , p ; EP ) are mined , where Q is the set of 
over - fitting embedded spectra and P is the set of embedded peptides . A 

The PSN branch of the network can process the peptides negative tuple ( 9 ) , Px ) for q , is mined such that q , is the 
and embed them onto the surface of the same hypersphere in 40 closest negative spectrum to q ; and pk is the closest negative 
the Euclidean subspace ( IR256 ) , enabling the direct com peptide to q ;. Similarly , a negative tuple ( 97 , Pm ) for p ; is 
parison between spectra and peptides . The PSN can include mined such that q , is the closest negative spectrum to P ; and 
( or consist of ) one bi - directional long short - term memory Pm is the closest negative peptide to Pi . Hence , a sextuplet 
( Bi - LSTM ) layer followed by two fully connected layers . S = ( ( qi , P :) , Lji , Pkio 970 p ) containing a query ( or anchor ) 
An embedding layer can be added before the Bi - LSTM layer 45 spectrum , positive peptide , two negative spectra , and two 
to embed each amino acid character into a floating point negative peptides is constructed via online sextuplet mining 
vector ( e.g. , of size 256 ) . Because there are 20 amino acids , for each positive example in the training dataset . The 
the vocabulary size used can be 20 to construct the embed- learning parameters are given in Table 2 . 
dings . Bi - LSTM can have a hidden dimension of 512 , and The mathematical formulation of online negative mining 
the output from both forward pass and backward pass can be 50 to generate sextuplets will now be discussed . Given a batch 
concatenated ( e.g. , to get an output of total length of 1024 ) . B containing b training samples , i.e. two sets Qbar and Pbar , 
This output can be further fed to the two fully connected after forwarding Qbar through the SSN and P bar through the 
layers , which can have sizes of , for example , 1024x512 and PSN , embedded spectra Q = fssMbar ) and peptides P = PSN 
512x256 , respectively . ReLU can be used as the activation ( Pbar ) are obtained , where Q , PCIR256 . In order to effi 
function for the fully connected layers , and a dropout ( e.g. , 55 ciently compute negative examples for each positive pair 
with a probability of 0.3 ) can be used after the Bi - LSTM and ( q ; EQ , p ; EP ) , three distance matrices , Doxo , Doxp , and 
the first fully connected layer . Dexp , containing pairwise squared L2 distances ( SED ) of 
A training dataset can be generated from spectral libraries spectra and peptides are calculated . DoxQ contains the SED 

obtained from online repositories ( e.g. , NIST and MassIVE ) . values between all spectra || q ; -q | ?, DO contains the SED 
The spectral libraries can be preprocessed to generate two 60 values between spectra and peptides || q ; -p : | , and Dpxp 
sets of data ( i.e. , spectra and their corresponding peptides ) . contains SED values between all peptides || P ; -P ; / 12 , where 
For the examples discussed herein , about 4.8 million spectra i , je { 1 , 2 , ... b } . Note that these are symmetric matrices of 
with known peptide sources were obtained , containing about size bxb with diagonal containing the positive pair SEDs for 
0.5 million spectra from modified peptides . The modifica- Doxp and zero for Doxo and DPxp . For Doxo and DPxp , the 
tions used for training the datasets included phosphory- 65 distance matrix can be calculated as follows ( only the 
lation , oxidation , and N - terminal acetylation . Complete calculation for Dexo is shown , as Dpxp is derived in exactly 
details of the training dataset are given in Table 1 . the same way ) . 
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. , 
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Consider the Gramian matrix of Q to be Go : example ( see also Schultz et al . , Learning a distance metric 
from relative comparisons , In : Advances in neural informa Go = Gramian ( Q ) = [ < 9 ; 9 ; > ] tion processing systems , 2004 , p . 41-48 ; which is hereby 

and the diagonal of G , as : incorporated by reference herein in its entirety ) . In this case , 
& q = diag ( G ) 5 the differences between SEDs among A and P || A - P | 12 , and 

A and N || A - N ||| is minimized with a constant margin value Then , Doxo is given by : added to the positive distance as shown below . 
Dexo = 8017-2Go + lgo ? 

where 1 is a vector containing all ones and is the same length 
89 ( i.e. , b ) . Dexp can be derived in a similar fashion as max ( || A – PIP ? – || A – N ) ] 1 ? + margin , 0 ) follows : 
Let 

T 

a 
10 b 

as L = 
i = 0 

Gp = Gramian ( P ) = [ < PxP ; > ] 

and 

& p = diag ( GP ) 

Then 

T Dexp = 8017-29 " P + 1g 

This works well where data with single modality is dealt 
15 with ( e.g. , image verification ) . In many embodiments , the 

novel loss function ( SNAP - loss ) can extend triplet - loss to 
multi - modal data , such as numerical spectra and sequence 
peptides . All possible negatives ( q ;, Pk . 91. Pm ) can be 
considered for a given positive pair ( qi , P ; ) and the total loss 

20 can be averaged . The four possible negatives are explained 
below . 

4 ;: The negative spectrum for q ;. 
Pk : The negative peptide for q ;. 
9 ;: The negative spectrum for Pi . 
Pm : The negative peptide for Pi . 
In order to calculate the loss value , a few variables can 

first be defined that are precomputed in distance matrices 
above as follows : 

TABLE 2 

Training parameters for SpeCollate 25 

Parameters Values 

d = 119 : -p : / 12 30 

Train / Test 
Learning Rate 
Optimizer 
Weight Decay 
Num . Layers 
Margin 

0.8 
0.0001 
Adam 
0.0001 

1 LSTM , 2 FC 
0.2 

dni = l197-9 ; P 

dn2 = 119 : -Pz11 
35 

dn3 = || P ; -9 : 12 
and DPxP 

Once these matrices are calculated , the four negatives can 
be calculated using min function over matrices . Let the 
elements of matrices D. QxQ DoxP ; be represented 
by 99ir , PPir , and Pir , respectively , where i , r represent the 
row and the column indexes , respectively . Then , the sub 
scripts ji , ki , li and m ; for the negative examples in the 
sextuplet S can be determined using the following four 
equations : 

dn4 = || P ; -Pm12 
Then the SNAP - loss is calculated as follows : 

40 

5 

L = max ( d ; – dny + margin , 0 ) 4b 
i = 1 r = 1 

= = 45 
rri 

= 

256 m ; = 
rrei 

ji = argmingir , i = 1 , ... , b 
The training process is visualized in FIG . 5. Once the 

k ; = argmingpri , i = 1 , ... , b training is complete , the similarity inference can be per 
formed on a test dataset by simply transforming the peptides 

l ; = argmingpir , i = 1 , ... , b and spectra into the embedded subspace and applying the 
50 nearest neighbor search . FIG . 3 shows the resultant Euclid 

argminpir , i = 1 , ... , b ean space is IR where all the peptides and spectra are 
projected onto . 

Because a large number of spectra might need to be 
As these subscripts indicate the corresponding indices of searched against peptides , the peptides can be indexed by 

the negative spectra and peptides in sets Q and P , they can 55 precomputing the embedded feature vectors and stored for 
be directly accessed for loss calculation . Once all the sex- later use . Similar pre - computation can be performed for the 
tuplets are constructed in a given batch , the loss value is experimental spectra before performing the search to avoid 
computed using the custom - designed SNAP - loss function . repeated encoding as each experimental spectrum needs to 
The gradient update is back - propagated through both the be searched against multiple peptides . 
SSN and the PSN . The online sextuplet mining is visualized 60 The L2 distance measure can be efficiently calculated 
in FIG . 5 . ( e.g. , on a GPU ) by computing the masked distance matrix 

The training objective is to minimize the SED between a for the peptides that fall within the precursor m / z range . 
given spectrum and its corresponding positive peptide while Further , this process can easily scale to multiple GPUs 
maximizing for the negative examples . In order to achieve making it feasible for large datasets . The inverse of the L2 
this , an approach can be adopted similar to triplet - loss 65 distance can be reported as the match score . 
function , which works on triplets ( A , P , N ) with A as the The embodiments of the subject invention can improve 
anchor , P as the positive example , and N as the negative the machine on which it is running by minimizing comput 
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ing resource costs . This technical solution solves the tech- The transitional term “ comprising , " " comprises , ” or 
nical problem of vast amounts of computing resources being " comprise ” is inclusive or open - ended and does not exclude 
required to match mass spectra and peptides on computing additional , unrecited elements or method steps . By contrast , 
machines . the transitional phrase “ consisting of ” excludes any element , 

In order to measure the L2 distance between the embed- 5 step , or ingredient not specified in the claim . The phrases 
ded set of spectra Q and peptides P , Q can be split into " consisting ” or “ consists essentially of ” indicate that the 
batches ( e.g. , batches of size 1024 ) . Peptides can be selected claim encompasses embodiments containing the specified 
for each batch of spectra based on the precursor tolerance materials or steps and those that do not materially affect the 
and their number can vary . The maximum number of pep- basic and novel characteristic ( s ) of the claim . Use of the 
tides in a batch can be limited ( e.g. , to 16384 ) due to the 10 term “ comprising ” contemplates other embodiments that 
memory limit ( e.g. , 12 GB ) of the machine ( e.g. , a GPU ) . If " consist ” or “ consisting essentially of the recited compo 
more than the limit ( e.g. , 16384 ) fall within the precursor nent ( s ) . 
window , they can be further split into sub - batches and a When ranges are used herein , such as for dose ranges , 
search process can be repeated for each sub - batch . This combinations and subcombinations of ranges ( e.g. , sub 
gives two matrices A1024x256 and B < 16384x256 containing a 15 ranges within the disclosed range ) , specific embodiments 
batch of spectra and a sub - batch of peptides , respectively . therein are intended to be explicitly included . 
Parallel distance matrix Daxi calculation can be performed The methods and processes described herein can be 
using the following equation : embodied as code and / or data . The software code and data 

described herein can be stored on one or more machine DAxB = 841T - 2ATB + 1887 20 readable media ( e.g. , computer - readable media ) , which may 
is the diagonal vector of the Gramian matrix GA of include any device or medium that can store code and / or 

A and go is the diagonal vector of the Gramian matrix Gg of data for use by a computer system . When a computer system 
B. D is a 1024xs16384 distance matrix and contains the and / or processor reads and executes the code and / or data 
distances of each spectrum in A to each peptide in B. Next , stored on a computer - readable medium , the computer sys 
the mask matrix M of the same size as DAxb can be 25 tem and / or processor performs the methods and processes 
computed , which contains 1 for peptides that fall within the embodied as data structures and code stored within the 
precursor window of each spectrum and 0 for the rest . The computer - readable storage medium . 
Hadamard product of DA and M gives the distance mea- It should be appreciated by those skilled in the art that 
sure of only relevant peptide - spectrum pairs . For each computer - readable media include removable and non - re 
spectrum , the top scoring peptide ( minimum distance ) is 30 movable structures / devices that can be used for storage of 
kept and the rest are discarded giving a resultant score information , such as computer - readable instructions , data 
matrix of size 1024x5 , which is stored for posterior analysis structures , program modules , and other data used by a 
later . computing system / environment . A computer - readable 

Embodiments of the subject invention utilize a deep medium includes , but is not limited to , volatile 
similarity network for proteomics ( SpeCollate ) to learn a 35 as random access memories ( RAM , DRAM , SRAM ) ; and 
cross - modal similarity function between peptide and spectra non - volatile memory such as flash memory , various read 
for the purpose of identifying peptide - spectrum matches . only - memories ( ROM , PROM , EPROM , EEPROM ) , mag 
Proteomics has entered the realm of Big - Data , and the netic and ferromagnetic / ferroelectric memories ( MRAM , 
number of labeled and annotated spectra is increasing rap- FeRAM ) , and magnetic and optical storage devices ( hard 
idly . Related art computational techniques for peptide data- 40 drives , magnetic tape , CDs , DVDs ) ; network devices ; or 
base search are not able to keep up with the ever growing other media now known or later developed that are capable 
data demand and are limited to performing database search of storing computer - readable information / data . Computer 
for only moderate sized datasets . Moreover , related art readable media should not be construed or interpreted to 
methods suffer from heuristic scoring techniques and infe- include any propagating signals . A computer - readable 
rior quality of simulated theoretical spectra . SpeCollate 45 medium of embodiments of the subject invention can be , for 
marks the beginning of trend shift towards data - oriented example , a compact disc ( CD ) , digital video disc ( DVD ) , 
algorithm design for peptide database search , which elimi- flash memory device , volatile memory , or a hard disk drive 
nates the inherent problems associated with numerical strat- ( HDD ) , such as an external HDD or the HDD of a comput 
egies . This is achieved by learning a cross - modal similarity ing device , though embodiments are not limited thereto . A 
function that embeds spectra and peptides in a shared 50 computing device can be , for example , a laptop computer , 
Euclidean subspace for direct comparison . As the similarity desktop computer , server , cell phone , or tablet , though 
function is learned , it is able to overcome the limited embodiments are not limited thereto . 
performance of heuristic based scoring and inaccurate spec- A greater understanding of the embodiments of the sub 
tral simulation . SpeCollate learns this similarity function by ject invention and of their many advantages may be had 
optimizing a novel loss function ( SNAP - loss ) , which trains 55 from the following examples , given by way of illustration . 
on sextuplets of data points to project positive examples The following examples are illustrative of some of the 
closer to each other while pushing negative examples far methods , applications , embodiments , and variants of the 
from each other . By training on 4.8 million sextuplets , present invention . They are , of course , not to be considered 
SpeCollate was able to achieve a remarkable test accuracy of as limiting the invention . Numerous changes and modifica 
99 % while the database search accuracy for the test dataset 60 tions can be made with respect to embodiments of the 
was as high as 99.5 % . invention . 

Embodiments of the subject invention mark a paradigm 
shift from related art peptide - spectrum - comparing algo Example 1 
rithms to deep learning - based cross - modal similarity net 
works . This provides superior performance to related art 65 The network was trained ( as discussed extensively above ) 
algorithms , and it can be used for peptide deductions in a for 200 epochs on a dataset of size ~ 4.8 million sextuplets . 
peptide database search . The training was performed on an NVIDIA TITAN Xp GPU 

memory such 
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installed in a server of 48 - cores and 120 GBs of memory . a scenario where positive examples are far more valuable 
Pytorch 1.6 was used to design the network using Python than the negative ones ( such is the case when searching for 
3.7.1 on Linux 16.04 . The database search was also per- a peptide - spectrum match ) , precision - recall curves ( FIGS . 
formed on the test dataset to measure the quality of results 8B and 9B ) better represent the performance as the true 
just by comparing the embeddings . 5 negatives are not considered for either precision or recall 

The network was trained for 200 epochs to achieve calculation . 
validation accuracy of 99 % . The accuracy was measured by As seen in the results , the systems and methods of 
the ratio of number of times the correct peptide is the closest embodiments of the subject invention ( using SpeCollate ) 
one to the anchor spectrum to the total number of spectra in mark a paradigm shift and move towards MS based pro 
a batch . The true peptide t , is defined as a Boolean function 10 teomics database search using deep learning . By eliminating 
that outputs one of the closest peptides p to the anchor q in the need for approximate scoring functions and unsophisti 
the current batch B is the true peptide P , and zero otherwise . cated spectrum simulators , SpeCollate significantly simpli 

fies the database search process and shows that deep learn 
ing methods can achieve performance on par with the 

1 argminpeb llg - p | l2 = Pa 15 state - the - of - art related art systems and methods . Moreover , 
tp ( q , B ) 

otherwise SpeCollate reduces the search space by orders of magnitude 
by allowing the spectrum of any charge to be compared 
directly against the peptide . Similarly , the network ( SpeCol 
late ) can be trained to match the modified spectra to their 

20 original unmodified peptides , further reducing the search 
????? , ? ) space and leading to improved search times and false 

discovery rates . Accuracy 
| BI The observed recall values , shown in FIG . 7 , are as 

expected because the recall values of the related art scoring 
is the true peptide for q , B is the current batch , 25 functions pose an upper bound for the trained network 

and PB and QB represent the peptides and spectra , respec performance as the labeled datasets are generated using the 
same functions . SpeCollate demonstrates its efficiency by tively , in B. FIGS . 6A and 6B show the accuracy and loss 

values , respectively , for the training process . performing marginally close to these functions . 
The similarity inference was then performed for a test It should be understood that the examples and embodi 

30 ments described herein are for illustrative purposes only and dataset containing 46,000 spectra corresponding to 35,000 that various modifications or changes in light thereof will be peptides , and the peptide identification ratio ( PIR ) was 
compared against the related art XCorr and Hyperscore suggested to persons skilled in the art and are to be included 

within the spirit and purview of this application . scoring functions . The dataset for the evaluation was a All patents , patent applications , provisional applications , subset of the NIST Human Phosphopeptide Label Free 
Library and was not used for training of validation purposes . 35 and publications referred to or cited herein are incorporated 

by reference in their entirety , including all figures and tables , This dataset was kept for testing purposes due to the limited 
number of modifications ( per peptide ) as the model is only to the extent they are not inconsistent with the explicit 

teachings of this specification . able to match peptides with one modification . Only samples What is claimed is : with either no modification or a single modification were 
selected . Modifications are limited to phosphorylation and 1. A system for measuring cross - modal similarity between 

mass spectra and peptides , the system comprising : oxidation and spectra with charge value 5+ or less were 
used . PIR is defined as follows : a processor ; and 

a machine - readable medium in operable communication 
with the processor and having instructions stored 
thereon that , when executed by the processor , perform ip ( q , Bp ) the following steps : 
receiving a set of mass spectra data and a set of peptide | BI data into a network comprising a spectral sub - net 
work ( SSN ) and a peptide sub - network ( PSN ) ; 

where By represents the peptides that fall within the 50 inputting the set of mass spectra data into the SSN , the 
precursor mass filter and Q represents the spectra set . FIG . SSN comprising two fully connected hidden layers 
7 shows the PIR values for the three scoring functions . As and an L2 normalization output layer ; 
can be seen , SpeCollate performed on par with the two inputting the set of peptide data into the PSN , the PSN 
state - of - the - art scoring functions for a +/- 0.5 Da precursor comprising one bi - directional long short - term 
mass tolerance window . On the other hand , for a +/- 250 Da 55 memory ( Bi - LSTM ) layer and two fully connected 
mass window , SpeCollate significantly outperformed XCorr layers ; 
while giving comparable results to Hyperscore . processing the set of mass spectra data in the SSN and 

The receiver operating characteristic ( ROC ) curves were embedding it on a surface of a unit hypersphere in a 
also plotted , as were precision - recall curves , for comparing Euclidean subspace ; 
the performance of the three scoring functions . Referring to 60 processing the set of peptide data in the PSN and 
FIGS . 8A , 8B , 9A , and 9B , SpeCollate performed signifi embedding it on the surface of the unit hypersphere 
cantly better than XCorr and Hyperscore in both open in the Euclidean subspace ; and 
( FIGS . 9A and 9B ) and closed ( FIGS . 8A and 8B ) search . It matching mass spectra from the set of mass spectra data 
is noted that ROC curves tend to overestimate the skill of a with peptides from the set of peptide data , using an 
model , especially for open search , when the classes are not 65 L2 - distance - based similarity measure . 
balanced and there are far more true - negatives than false- 2. The system according to claim 1 , the instructions when 
positives ( with a rate that stays close to zero ) . Therefore , for executed further performing the following step : 
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training the network on a loss function that calculates matching , by the processor , mass spectra from the set of 
gradients from sextuplets of data points of the set of mass spectra data with peptides from the set of peptide 
mass spectra data , the set of peptide data , or both . data , using an L2 - distance - based similarity measure . 

3. The system according to claim 2 , the training of the 12. The method according to claim 11 , further compris 
network comprising calculating a loss value by generating sing : 
the sextuplets after each forward pass , training , by the processor , the network on a loss function 

each sextuplet comprising a positive pair ( Q , P ) , a nega that calculates gradients from sextuplets of data points 
tive pair ( Qv , Py ) for Q , and a negative pair ( Qy , Px ) of the set of mass spectra data , the set of peptide data , 
for P , where Q is an anchor spectrum and Pis a positive 
peptide . 13. The method according to claim 12 , the training of the 

4. The system according to claim 3 , each negative pair network comprising calculating a loss value by generating 
being selected via an online hardest negative mining pro- the sextuplets after each forward pass , 
cess , in which negative spectra and peptides that are closest each sextuplet comprising a positive pair ( Q , P ) , a nega 
to Q and P are selected for a given batch after each forward tive pair ( Qx , Pr ) , for Q , and a negative pair ( Qx , Px ) p 
pass . for P , where Q is an anchor spectrum and P is a positive 

5. The system according to claim 1 , the PSN further peptide . 
comprising an embedding layer before the Bi - LSTM layer . 14. The method according to claim 13 , each negative pair 

6. The system according to claim 5 , the embedding layer being selected via an online hardest negative mining pro 
using a vocabulary size of 30 to construct embeddings . 20 cess , in which negative spectra and peptides that are closest 

7. The system according to claim 1 , the Bi - LSTM layer to Q and P are selected for a given batch after each forward 
having a hidden dimension of 512 , and pass . 

the two fully connected layers of the PSN comprising a 15. The method according to claim 11 , the PSN further 
first layer with a size of 1024x512 and a second layer comprising an embedding layer before the Bi - LSTM layer , 
with a size of 512x256 . the embedding layer using a vocabulary size of 30 to 

8. The system according to claim 1 , the two fully con construct embeddings . 
nected hidden layers of the SSN comprising a first layer with 16. The method according to claim 11 , the Bi - LSTM layer 
a size of 80,000x1024 and a second layer with a size of having a hidden dimension of 512 , and 
1024x256 . the two fully connected layers of the PSN comprising a 

9. The system according to claim 1 , the two fully con- 30 first layer with a size of 1024x512 and a second layer 
nected hidden layers of the SSN utilizing a rectified linear with a size of 512x256 . 
activation function ( ReLU ) , 17. The method according to claim 11 , the two fully 

the SSN further comprising a dropout mechanism with a connected hidden layers of the SSN comprising a first layer 
probability of 0.3 after a first layer of the two fully with a size of 80,000x1024 and a second layer with a size 
connected hidden layers of the SSN and before a 35 of 1024x256 . 
second layer of the two fully connected hidden layers 18. The method according to claim 11 , the two fully 
of the SSN . connected hidden layers of the SSN utilizing a rectified 

10. The system according to claim 1 , the two fully linear activation function ( ReLU ) , 
connected layers of the PSN utilizing a rectified linear the SSN further comprising a dropout mechanism with a 
activation function ( ReLU ) , probability of 0.3 after a first layer of the two fully 

the PSN further comprising : connected hidden layers of the SSN and before a 
a first dropout mechanism with a first probability of 0.3 second layer of the two fully connected hidden layers 

after the Bi - LSTM layer and before a first layer of of the SSN . 
the two fully connected layers of the PSN ; and 19. The method according to claim 11 , the two fully 

a second dropout mechanism with a second probability 45 connected layers of the PSN utilizing a rectified linear 
of 0.3 after the first layer of the two fully connected activation function ( ReLU ) , 
layers of the PSN and before a second layer of the the PSN further comprising : 
two fully connected layers of the PSN . a first dropout mechanism with a first probability of 0.3 

11. A method for measuring cross - modal similarity after the Bi - LSTM layer and before a first layer of 
between mass spectra and peptides , the method comprising : 50 the two fully connected layers of the PSN ; and 

receiving , by a processor , a set of mass spectra data and a second dropout mechanism with a second probability 
a set of peptide data into a network comprising a of 0.3 after the first layer of the two fully connected 
spectral sub - network ( SSN ) and a peptide sub - network layers of the PSN and before a second layer of the 
( PSN ) ; two fully connected layers of the PSN . 

inputting , by the processor , the set of mass spectra data 55 20. A system for measuring cross - modal similarity 
into the SSN , the SSN comprising two fully connected between mass spectra and peptides , the system comprising : 
hidden layers and an L2 normalization output layer ; a processor ; and 

inputting , by the processor , the set of peptide data into the a machine - readable medium in operable communication 
PSN , the PSN comprising one bi - directional long short- with the processor and having instructions stored 
term memory ( Bi - LSTM ) layer and two fully con- 60 thereon that , when executed by the processor , perform 
nected layers ; the following steps : 

processing , by the processor , the set of mass spectra data receiving a set of mass spectra data and a set of peptide 
in the SSN and embedding it on a surface of a unit data into a network comprising a spectral sub - net 
hypersphere in a Euclidean subspace ; work ( SSN ) and a peptide sub - network ( PSN ) ; 

processing , by the processor , the set of peptide data in the 65 inputting the set of mass spectra data into the SSN , the 
PSN and embedding it on the surface of the unit SSN comprising two fully connected hidden layers 
hypersphere in the Euclidean subspace ; and and an L2 normalization output layer ; 
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inputting the set of peptide data into the PSN , the PSN the PSN further comprising an embedding layer before 
comprising one bi - directional long short - term the Bi - LSTM layer , 
memory ( Bi - LSTM ) layer and two fully connected the embedding layer using a vocabulary size of 30 to layers ; construct embeddings , processing the set of mass spectra data in the SSN and the Bi - LSTM layer having a hidden dimension of 512 , embedding it on a surface of a unit hypersphere in a 
Euclidean subspace ; the two fully connected layers of the PSN being after the 

processing the set of peptide data in the PSN and Bi - LSTM layer and comprising a first layer with a size 
embedding it on the surface of the unit hypersphere of 1024x512 and a second layer with a size of 512x256 , 
in the Euclidean subspace ; the two fully connected hidden layers of the SSN com 

training the network on a loss function that calculates prising a first layer with a size of 80,000x1024 and a 
gradients from sextuplets of data points of the set of second layer with a size of 1024x256 , 
mass spectra data , the set of peptide data , or both ; the two fully connected hidden layers of the SSN utilizing 
and a rectified linear activation function ( ReLU ) , 

matching mass spectra from the set of mass spectra data the SSN further comprising an SSN dropout mechanism with peptides from the set of peptide data , using an with a probability of 0.3 after the first layer of the SSN L2 - distance - based similarity measure , and before the second layer of the SSN , the training of the network comprising calculating a loss the two fully connected layers of the PSN utilizing an value by generating the sextuplets after each forward ReLU , and pass , the PSN further comprising : each sextuplet comprising a positive pair ( Q , P ) , a nega 
tive pair ( Qv , Py ) for Q , and a negative pair ( Qv , PNP a first PSN dropout mechanism with a first probability 
for P , where Q is an anchor spectrum and Pis a positive of 0.3 after the Bi - LSTM layer and before the first 
peptide , layer of the PSN ; and 

each negative pair being selected via an online hardest a second PSN dropout mechanism with a second prob 
negative mining process , in which negative spectra and ability of 0.3 after the first layer of the PSN and 
peptides that are closest to Q and P are selected for a before the second layer of the PSN . 
given batch after each forward pass , 
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