
Approximation algorithms for the bottleneck
stretch factor problem

Giri Narasimhan∗ Michiel Smid†

December 8, 2000

Abstract
The stretch factor of a Euclidean graph is the maximum ratio of

the distance in the graph between any two points and their Euclidean
distance. Given a set S of n points in Rd, we show how to construct
a data structure of size O(log n), such that for an arbitrary query
value b > 0, we can in O(log log n) time compute an approximation of
the stretch factor of the graph Gb, which is the threshold graph on S
containing all edges of length at most b. Even though there could be
up to

(
n
2

)
different stretch factors, we show that this data structure

can be constructed in subquadratic time. If we think of the points of S
as being airports, then the stretch factor of Gb gives a measure of the
maximum percentage increase in flight distance using flight segments
of length at most b over the direct distance.

Our algorithm uses techniques from computational geometry, such
as well-separated pairs, minimum spanning trees, data structures for
the nearest-neighbor problem, and algorithms for selecting and rank-
ing distances.

1 Introduction

Assume that we are given the coordinates of n airports. Given an airplane
that can fly a distance of b miles without refueling, a typical query is to
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determine the smallest value of t such that the airplane can travel between
any pair of airports using flight segments of length at most b miles, such that
the sum of the lengths of the flight segments is not longer than t times the
direct “as-the-crow-flies” distance between the airports. This problem falls
under the general category of bottleneck problems. In our case, the stretch
factor, i.e., the value of t, is a measure of the maximum increase in fuel costs
caused by choosing a path other than the direct path between any source
and any destination. (Clearly, this direct path cannot be taken if its length
is larger than b miles.)

Let us formalize this problem. For simplicity, we take the Euclidean
metric for the distance between two airports. In practice, one needs to take
into account the curvature of the earth and the wind conditions.

Let d ≥ 2 be a small constant. For any two points p and q in Rd, we
denote their Euclidean distance by |pq|. Let S be a set of n points in Rd,
and let G be an undirected graph having S as its vertex set. The length of
any edge (p, q) of G is defined as |pq|. Furthermore, the length of any path
in G between two vertices p and q is defined as the sum of the lengths of the
edges on this path. We call such a graph G a Euclidean graph. For any two
vertices p and q of G, we denote by |pq|G their distance in G, i.e., the length
of a shortest path connecting p and q. If there is no path between p and q,
then |pq|G =∞. The stretch factor t∗ of G is defined as

t∗ := max

{
|pq|G
|pq|

: p ∈ S, q ∈ S, p 6= q

}
.

Note that t∗ =∞, if the graph G is not connected.
The bottleneck stretch factor problem is to preprocess the points of S into

a data structure, such that for any real number b > 0, we can efficiently com-
pute the stretch factor of the subgraph of the complete graph on S containing
all edges of length at most b.

Let G = (S,E) denote the Euclidean graph on S containing all edges hav-
ing length at most b. The time complexity of solving the all-pairs-shortest-
path problem for G is an upper bound on the time complexity of computing
the stretch factor of G. Hence, running Dijkstra’s algorithm—implemented
with Fibonacci heaps—from each vertex of G, gives the stretch factor of G,
in O(n2 log n + n|E|) time (c.f., [9]). Note that |E| can be as large as

(
n
2

)
.

Hence, without any preprocessing, we can answer queries in O(n3) time. It
may be possible to improve the query time, but we are not aware of any
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algorithm that computes the stretch factor in subquadratic time. (For ex-
ample, we do not even know if the stretch factor of a Euclidean path can be
computed in o(n2) time.)

A second solution for the bottleneck stretch factor problem is obtained
from the observation that there are only

(
n
2

)
“different” query values b. Hence,

if we store all
(
n
2

)
different stretch factors, then a query can be solved in

O(log n) time by searching with the query value b in the sorted sequence
of all

(
n
2

)
Euclidean distances between the pairs of points of S. Clearly, in

this case, the preprocessing time and the amount of space used are at least
quadratic in n.

This leads to the question whether more efficient solutions exist, if we are
satisfied with an approximation to the stretch factor of the graph G.

Let c1 ≥ 1 and c2 ≥ 1 be real numbers, let G be an arbitrary Euclidean
graph on the point set S, and let t∗ be the stretch factor of G. We say that the
real number t is a (c1, c2)-approximate stretch factor of G, if t/c1 ≤ t∗ ≤ c2t.
The current paper considers the following problem:

Problem 1 The (c1, c2)-approximate bottleneck stretch factor problem is to
preprocess the points of S into a data structure, such that for any real number
b > 0, we can efficiently compute a (c1, c2)-approximate stretch factor of the
subgraph of the complete graph on S containing all edges of length at most b.

1.1 Our results

In this paper, we will present a data structure that solves Problem 1. The
general approach, which is given in Section 3, is as follows. We partition the
sequence of

(
n
2

)
exact stretch factors into O(log n) subsequences, such that

any two stretch factors in the same subsequence are approximately equal.
Our data structure contains a sequence of O(log n) stretch factors, one from
each subsequence. We also store a corresponding sequence of O(log n) dis-
tances between pairs of points. The latter sequence is used to search in
O(log log n) time in the sequence of O(log n) stretch factors. The result is a
data structure of size O(log n) that can be used to solve the queries of Prob-
lem 1 in O(log log n) time. The time to build this data structure, however,
is at least quadratic in n.

In Section 4, we show that it suffices to use a sequence of O(log n) ap-
proximate stretch factors instead of the sequence of O(log n) exact stretch
factors. Since the graphs whose stretch factors we have to approximate may
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have a quadratic number of edges, however, we need to make one more ap-
proximation step. That is, in Section 5, we use Callahan and Kosaraju’s
well-separated pair decomposition [7] to approximate the graph G contain-
ing all edges of length at most b by a graph H having O(n log n) edges and
having approximately the same stretch factor. Then we use the algorithm
of Narasimhan and Smid [13] to compute an approximate stretch factor of
the graph H. In this way, we obtain the main result of this paper: a data
structure of size O(log n), query time O(log log n), and that can be built in
subquadratic time.

1.2 Related work

There has been substantial work on the problem of constructing a Euclidean
graph on a given set of points whose stretch factor is bounded by a given
constant t > 1. A good overview of results in this direction can be found in
the surveys by Eppstein [11] and Smid [15].

The problem of approximating the stretch factor of any given Euclidean
graph has been considered by the authors in [13]. There, we prove the fol-
lowing result, which will be used in the current paper.

Theorem 1 ([13]) Let S be a set of n points in Rd, let G = (S,E) be an
arbitrary connected Euclidean graph, let β ≥ 1 be an integer constant, and
let ε be a real constant, such that 0 < ε ≤ 1/2. In O(|E|n1/β log2 n) expected
time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.

The proof of this theorem uses the well-separated pair decomposition
(WSPD) of Callahan and Kosaraju [7]. We use this WSPD in Section 5 to
approximate the graph containing all edges of length at most b by a graph
having O(n log n) edges and having approximately the same stretch factor.
For other applications of the WSPD, see [2, 5, 6, 7].

To the best of our knowledge, the exact and approximate bottleneck
stretch factor problems have not been considered before.

2 Some preliminary results

We start by introducing some notation and terminology. Let S be a set of n
points in Rd, and let m be the number of distinct distances defined by any
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two distinct points of S. Let δ1 < δ2 < . . . < δm be the sorted sequence of
these distances. Note that m ≤

(
n
2

)
.

Let G0 be the graph on S having no edges. Furthermore, for any i,
1 ≤ i ≤ m, let Gi be the i-th bottleneck graph, i.e., the subgraph of the
complete graph on S containing all edges of length at most δi. Clearly, for
any i, 0 ≤ i < m, Gi is a subgraph of Gi+1, and Gm is the complete graph
on S. For any i, 0 ≤ i ≤ m, we denote by t∗i the (exact) stretch factor of
the graph Gi. The sequence T = 〈t∗0, t∗1, t∗2, . . . , t∗m〉 will be referred to as the
stretch factor spectrum of S.

It is clear that determining the stretch factor spectrum of S solves the
exact version of the bottleneck stretch factor problem. However, this involves
determining the stretch factor of Θ(n2) distinct graphs, which is likely to be
prohibitively expensive.

In the rest of this section, we will prove some simple properties of the
stretch factor spectrum, which will be used to solve Problem 1.

First, we observe that t∗0 =∞, t∗m = 1, and t∗i+1 ≤ t∗i for all i, 0 ≤ i < m.
Also, the graph G0 is not connected, whereas the graph Gm is connected.
Let k be the smallest index such that the graph Gk is connected. Then
t∗0 = t∗1 = . . . = t∗k−1 = ∞, t∗k is finite, and 1 = t∗m ≤ t∗m−1 ≤ . . . ≤ t∗k+1 ≤ t∗k.
We will henceforth refer to the distance δk (corresponding to index k) as the
connectivity threshold.

The following lemma characterizes the connectivity threshold. It is a
restatement of the well-known folklore theorem that states that the minimum
spanning tree is also a bottleneck minimum spanning tree.

Lemma 1 Let T be a minimum spanning tree of S. Then the longest edge
in T has length δk.

Proof. Let p and q be two points of S such that (p, q) is a longest edge in
T , and let δ := |pq|. We have to show that δ = δk.

If we remove the edge (p, q) from T , then we get two disjoint trees T1 and
T2. Let A and B be the vertex sets of T1 and T2, respectively. Then A and
B form a partition of the set S, and p and q are in different subsets. We may
assume w.l.o.g. that p ∈ A and q ∈ B. Since T is a minimum spanning tree
of S, it is clear that

δ = |pq| = min{|ab| : a ∈ A, b ∈ B}.

Hence we have |ab| ≥ δ for all a ∈ A and b ∈ B. Let i be the index such that
δ = δi. Then it follows that none of the graphs G0, G1, . . . , Gi−1 is connected.
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On the other hand, each edge of T has length at most δ = δi. Hence, T is
contained in Gi, which implies that Gi is connected. This shows that i = k
and, hence, δ = δk.

We now use Lemma 1 to prove an upper bound on the stretch factor t∗k
of the bottleneck graph Gk. The bound is useful because it suggests that
binary search on the stretch factor spectrum can be performed efficiently.

Lemma 2 We have t∗k ≤ n− 1.

Proof. First note that the claim holds if k = m. Therefore, we may assume
that k < m. Consider the graph Gk, and let p and q be any two distinct
points of S that are not connected by an edge in Gk. Then |pq| > δk. We will
show that the distance |pq|Gk in Gk between p and q is less than (n− 1)|pq|.

Let T be a minimum spanning tree of S. Then, by Lemma 1, T is
contained in Gk. Let P be the path in T between p and q. This path consists
of at most n − 1 edges, each having length less than or equal to δk. Hence,
the length |P | of P is bounded from above by

|P | ≤ (n− 1)δk < (n− 1)|pq|.

It follows that
|pq|Gk ≤ |P | ≤ (n− 1)|pq|. (1)

Clearly, (1) also holds if the points p and q are connected by an edge in Gk.
(If n = 2, then (1) becomes an equality.) Therefore, we have shown that
t∗k ≤ n− 1.

3 A first solution

We start by describing the general idea of our solution to the approximate
bottleneck stretch factor problem. Let c > 1 be an arbitrary constant. For
the preprocessing phase, we partition the index set {k, k + 1, . . . ,m} into
O(log n) subsets of consecutive integers, such that for any two indices i and
i′ of the same subset, the stretch factors t∗i and t∗i′ are within a factor of
c of each other. This partition induces partitions of the two sequences δi,
k ≤ i ≤ m, and t∗i , k ≤ i ≤ m, into O(log n) subsequences. For each j,
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we let aj denote the smallest index in the j-th subset of the partition of
{k, k + 1, . . . ,m}.

Our data structure consists of the O(log n) values δaj and t∗aj . For the
query phase, given a value b > 0, we search for the largest index j, such that
δaj ≤ b, and report the value of t∗aj . We will prove later that t∗aj approximates
the stretch factor of the subgraph of the complete graph on S containing all
edges of length at most b. In the rest of this section, we will formalize this
approach.

As mentioned above, we fix a constant c > 1. For any integer j ≥ 0, we
define

Xj := {i : k ≤ i ≤ m and cj ≤ t∗i < cj+1}.

Since all stretch factors t∗i are greater than or equal to one, these sets Xj

partition the set {k, k + 1, . . . ,m}. Also, if Xj 6= ∅, then there is an index
i such that cj ≤ t∗i . Since t∗i ≤ t∗k and, by Lemma 2, t∗k ≤ n − 1, we have
cj ≤ n− 1, which implies that j ≤ blogc(n− 1)c.

Let ` be the number of non-empty sets Xj. Then ` ≤ 1 + blogc(n − 1)c.
Each non-empty set Xj is a set of consecutive integers. We denote these non-
empty sets by I1, I2, . . . , I`, and write them as Ij = {aj, aj + 1, . . . , aj+1− 1},
1 ≤ j ≤ `, where k = a1 < a2 < . . . < a`+1 = m+ 1.

The following lemma states that any two stretch factors, whose indices
are from the same set Ij, are within a factor of c of each other. The proof
follows immediately from the definition of the sets Ij.

Lemma 3 Let j be any integer such that 1 ≤ j ≤ `, and let i and i′ be any
two elements of the set Ij. Then 1/c < t∗i /t

∗
i′ < c.

Now we are ready to give the data structure for solving the approximate
bottleneck stretch factor problem. This data structure consists of the follow-
ing.

1. The connectivity threshold δk.

2. An array ∆[1 . . . `], where ∆[j] = δaj , 1 ≤ j ≤ `.

3. An array SF [1 . . . `], where SF [j] = t∗aj , 1 ≤ j ≤ `.

Note that the array ∆ is sorted in increasing order, whereas the array SF is
sorted in non-increasing order.
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Recall that in a query, we get a real number b > 0, and have to compute
an approximate stretch factor t of the graph containing all edges having
length at most b. Such a query is answered as follows.

1. If b < δk, then the subgraph of the complete graph on S containing all
edges of length at most b is not connected. Hence, we report t :=∞.

2. If b ≥ δk, then we search in ∆ for the largest index j such that ∆[j] ≤ b,
and report the value of t defined as t := SF [j].

The following lemma proves the correctness of this query algorithm.

Lemma 4 Assume that b ≥ δk. Let t∗ be the exact stretch factor of the
subgraph of the complete graph on S containing all edges of length at most b.
The value of t reported by the query algorithm satisfies t/c < t∗ < ct.

Proof. Consider the index j that was found by the query algorithm. Hence,
t = SF [j] = t∗aj . Note that aj ∈ Ij. Let i be the largest index such that
δi ≤ b. Then t∗ = t∗i , and i is also an element of Ij. The claim now follows
from Lemma 3.

Let us analyze the complexity of our solution. We need O(`) = O(log n)
space to store the data structure. If we implement the query algorithm using
binary search, then the query time is bounded by O(log `) = O(log log n).

It remains to describe and analyze the preprocessing algorithm. First, we
compute the sorted sequence of m ≤

(
n
2

)
distances. This takes O(n2 log n)

time. Then we compute a minimum spanning tree of S. The length of a
longest edge in this tree gives us the distance δk, and its index k. (See
Lemma 1.) This step also takes O(n2 log n) time. (Note that a minimum
spanning tree of a set of n points in R

d can be computed faster. The
O(n2 log n)–time bound, however, is good enough for the moment.) Now
consider the sequence

1 = t∗m ≤ t∗m−1 ≤ . . . ≤ t∗k+1 ≤ t∗k ≤ n− 1 (2)

of stretch factors. The index sets I1, I2, . . . , I` are obtained by locating the
real numbers cj, 0 ≤ j ≤ blogc(n−1)c, in the sequence (2). Let TSF (n) denote
the worst-case time to compute the exact stretch factor of any Euclidean
graph on n points. Then, using binary search, we locate cj in the sequence
(2) in time

O (TSF (n) log(m− k + 1)) = O (TSF (n) log n) .
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Hence, we can compute all index sets Ij, 1 ≤ j ≤ `, in O(TSF (n) log2 n) total
time. Given these index sets, we can compute the two arrays ∆ and SF ,
in O(TSF (n) log n) time. If we write the constant c as 1 + ε, then we have
proved the following result.

Theorem 2 Let S be a set of n points in Rd, and let ε > 0 be a constant.
For the (1 + ε, 1 + ε)-approximate bottleneck stretch factor problem, there is
a data structure

1. that can be built in O
(
n2 log n+ TSF (n) log2 n

)
time,

2. that has size O(log n), and

3. whose query time is bounded by O(log log n).

Note that even though the data structure has size O(log n), the algorithm
given above uses Θ(n2) space to compute it.

As mentioned in Section 1, the time complexity for computing the stretch
factor of an arbitrary Euclidean graph is bounded by O(n3). Even though
it may be possible to improve this upper bound, it is probably very hard
to get a subquadratic time bound. Therefore, in the next section, we show
that the preprocessing time can be reduced, at the cost of an increase in the
approximation factor. The main idea is to store approximate stretch factors
in the array SF .

4 An improved solution

Here we exploit the fact that approximate stretch factors can be computed
more efficiently than exact stretch factors. In the previous section, we fixed
a constant c > 1, and partitioned the sequence

t∗m ≤ t∗m−1 ≤ . . . ≤ t∗k+1 ≤ t∗k (3)

of exact stretch factors into O(log n) subsets, such that any two stretch fac-
tors in the same subset are within a factor of c of each other. We obtained
this partition, by locating the values cj, 0 ≤ j ≤ blogc(n− 1)c, in the sorted
sequence (3).

In this section, we fix two additional constants c1 and c2 that are both
greater than or equal to one. For any i, k ≤ i ≤ m, let ti be a (c1, c2)-
approximate stretch factor of the bottleneck graph Gi. Hence, we have
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ti/c1 ≤ t∗i ≤ c2ti. We will show how to use the sequence tm, tm−1, . . . , tk
of approximate stretch factors to partition the index set {k, k + 1, . . . ,m}
into O(log n) subsets, such that for any two indices i and i′ within the same
subset, the exact stretch factors t∗i and t∗i′ are approximately equal. (The
approximation factor depends on c, c1, and c2.) This partition is obtained
by locating the values cj in the sequence tm, tm−1, . . . , tk. Here, we have to
be careful, because the values ti are not sorted. They are, however, “approx-
imately” sorted, and we will see that this suffices for our purpose.

Let x > 0 be a real number. We want to use binary search to “approxi-
mately” locate x in the “approximately” sorted sequence tm, tm−1, . . . , tk. We
specify this algorithm by its decision tree1. This tree is a balanced binary
tree that enables us to search in a sequence of numbers that have indices
k, k + 1, . . . ,m. More precisely,

1. the leaves of the tree store the indices k, k + 1, . . . ,m, in this order,
from left to right, and

2. each internal node u of the tree stores the smallest index that is con-
tained in the right subtree of u.

Given the real number x > 0, we search as follows:

Algorithm search(x)
u := root of the decision tree;
while u 6= leaf
do j := index stored in u;

if x ≤ tj
then u := right child of u
else u := left child of u
endif

endwhile;
return the index stored in u

The following lemma gives the approximation ratio of algorithm search(x).

Lemma 5 Let x > 0 be a real number, and let z be the index that is returned
by algorithm search(x).

1Note that this decision tree is not constructed (its size is quadratic in n), it is just
a convenient way to describe the algorithm. The decision tree represents all possible
computations of the algorithm on any input x.
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1. For each i, k ≤ i < z, we have t∗i ≥ x/c1.

2. For each i, z < i ≤ m, we have t∗i < c2x.

Proof. We will only prove the first claim. The second claim can be proved
in a symmetric way.

Let i be any index such that k ≤ i < z. Let u be the lowest common
ancestor of the leaves that store the indices i and z. Note that i is stored in
the left subtree of u, whereas z is stored in the right subtree of u.

Let j be the index that is stored in node u. Algorithm search(x) visits
node u and proceeds to the right child of u. Hence, it follows from the
algorithm that x ≤ tj. This implies that

t∗j ≥
1

c1

tj ≥
1

c1

x.

Since i < j, we have t∗i ≥ t∗j , from which the first claim follows.

Hence, running algorithm search(x) implicitly partitions the sequence
t∗k, t

∗
k+1, . . . , t

∗
m of exact stretch factors into the following three subsequences:

1. t∗k, t
∗
k+1, . . . , t

∗
z−1; these are all greater than or equal to x/c1.

2. t∗z.

3. t∗z+1, t
∗
z+2, . . . , t

∗
m; these are all less than c2x.

We are now ready to give the algorithm that partitions the sequence
t∗k, t

∗
k+1, . . . , t

∗
m of exact stretch factors into O(log n) subsets, such that any

two stretch factors in the same subset are approximately equal. First, we run
algorithm search(c). Let z be the index returned. Then we report the two
sets {z} and {z+1, z+2, . . . ,m} of indices. Next, we run algorithm search(c2)
on the index set {k, k+ 1, . . . , z− 1}. This results in a partition of the latter
set into three subsets. The “last” two subsets are reported, whereas the
“first” subset is partitioned further by running algorithm search(c3). After
O(log n) iterations, we obtain the partition we are looking for. The formal
partitioning algorithm is given below.

j := 1; r := m;
while r ≥ k
do z := search(cj);
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report the index set {z};
report the index set {z + 1, z + 2, . . . , r};
r := z − 1;
j := j + 1

endwhile

Let ` be the number of non-empty index sets that are computed by this
algorithm. As in Section 3, we denote these by I1, I2, . . . , I`, and write them
as Ij = {aj, aj + 1, . . . , aj+1 − 1}, 1 ≤ j ≤ `, where k = a1 < a2 < . . . <
a`+1 = m+1. It is easy to see that ` = O(log n). The following lemma states
that we have obtained the desired partition.

Lemma 6 Let y be any integer such that 1 ≤ y ≤ `, and let i and i′ be any
two elements of the set Iy. Then 1/(cc1c2) < t∗i /t

∗
i′ < cc1c2.

Proof. If the set Iy contains only one element, then i = i′, and the claim
clearly holds. Assume that |Iy| ≥ 2.

Let j be the integer such that the index set Iy is reported in the j-th
iteration of the partition algorithm. First assume that j ≥ 2. It follows from
Lemma 5 that t∗i < c2c

j and t∗i′ < c2c
j. In the (j−1)-st iteration, both indices

i and i′ were in the “first” subset. Hence, Lemma 5 implies that t∗i ≥ cj−1/c1

and t∗i′ ≥ cj−1/c1. The claim follows from these four inequalities. The proof
for the case when j = 1 is similar.

The data structure for solving the approximate bottleneck stretch factor
problem consists of the following:

1. The connectivity threshold δk.

2. An array ∆[1 . . . `], where ∆[j] = δaj , 1 ≤ j ≤ `.

3. An array SFapprox [1 . . . `], where SFapprox [j] = taj , 1 ≤ j ≤ `.

The query algorithm is basically the same as before. Given any real
number b > 0, we do the following.

1. If b < δk, then the subgraph of the complete graph on S containing all
edges of length at most b is not connected. Hence, we report t :=∞.

2. If b ≥ δk, then we search in ∆ for the largest index j such that ∆[j] ≤ b,
and report the value of t defined as t := SFapprox [j].
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The following lemma gives the approximation ratio of this query algo-
rithm.

Lemma 7 Assume that b ≥ δk. Let t∗ be the exact stretch factor of the
subgraph of the complete graph on S containing all edges of length at most b.
The value of t reported by the query algorithm satisfies

1

cc2
1c2

t < t∗ < cc1c
2
2t.

Proof. Let j be the largest index such that ∆[j] ≤ b. Then t = SFapprox [j] =
taj . Let i be the largest index such that δi ≤ b. Then t∗ = t∗i . Since i and aj
both belong to the index set Ij, Lemma 6 implies that

1

cc1c2

<
t∗

t∗aj
< cc1c2.

The lemma now follows from the fact that 1/c1 ≤ t∗aj/taj ≤ c2.

It is clear that the data structure has size O(log n), and that the query
time is bounded by O(log log n). In the rest of this section, we analyze the
time that is needed to construct the data structure. We will use the following
notation.

• TMST (n): the time needed to compute a minimum spanning tree of a
set of n points in Rd.

• Trank(n): the time needed to compute the rank of any positive real
number δ in the set of distances in a set of n points in Rd. (The rank
of δ is the number of distances that are less than or equal to δ.)

• TapproxSF (n): the time needed to compute a (c1, c2)-approximate stretch
factor of any bottleneck graph on a set of n points in Rd.

• Tsel(n): the time needed to compute the i-th smallest distance in a set
of n points in Rd, for any i, 1 ≤ i ≤

(
n
2

)
.

The preprocessing algorithm starts by computing a minimum spanning
tree of the point set S. Let δ be the length of a longest edge in this tree. Note
that the rank of δ is equal to k. Hence, we can compute the distance δk = δ,
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and the corresponding index k, in O(TMST (n) + Trank(n)) time. Given k and
δk, we can compute the partition of {k, k + 1, . . . ,m} into non-empty index
sets Ij, in O(TapproxSF (n) log2 n) time. Given this partition, we can compute
the array SFapprox [1 . . . `] in O(TapproxSF (n) log n) time. To compute the array
∆[1 . . . `], we have to solve O(log n) selection queries of the form “given an
index j, compute the aj-th smallest distance δaj in the point set S”. One
such query takes Tsel(n) time. Hence, we can compute the entire array ∆ in
O(Tsel(n) log n) time.

We observe that Trank(n) = O(Tsel(n) log n): We can compute the rank
of a positive real number δ, by performing a binary search in the index set
{1, 2, . . . ,

(
n
2

)
}. During this search, comparisons are resolved in Tsel(n) time.

If we write the constant c as 1 + ε, then we obtain the following result.

Theorem 3 Let S be a set of n points in Rd, and let ε > 0, c1 > 1, and
c2 > 1 be constants. For the ((1 + ε)c2

1c2, (1 + ε)c1c
2
2)-approximate bottleneck

stretch factor problem, there is a data structure

1. that can be built in O(TMST (n)+TapproxSF (n) log2 n+Tsel(n) log n) time,

2. that has size O(log n), and

3. whose query time is bounded by O(log log n).

5 A fast implementation of the improved al-

gorithm

In order to apply Theorem 3, we need good upper bounds on the functions
TMST (n), Tsel(n), and TapproxSF (n). For the first two functions, subquadratic
bounds are known, see Section 5.4. Theorem 1 implies an upper bound on
TapproxSF (n): We run the algorithm of [13] on the bottleneck graph. Since
such a graph can have a quadratic number of edges, however, this gives a
bound that is at least quadratic in n. In Section 5.2, we will show that the
bottleneck graph Gi can be approximated by a graph Hi having fewer edges.
That is, Hi has O(n log n) edges, and its stretch factor is approximately equal
to that of Gi. This will allow us to approximate the stretch factor of Gi in
subquadratic time.

The computation of the graph Hi is based on the well-separated pair
decomposition, devised by Callahan and Kosaraju [7].
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5.1 The well-separated pair decomposition

In this section, we briefly review well-separated pairs and some of their rele-
vant properties.

Definition 1 Let s > 0 be a real number, and let A and B be two finite sets
of points in Rd. We say that A and B are well-separated w.r.t. s, if there are
two disjoint d-dimensional balls CA and CB, having the same radius, such
that (i) CA contains all points of A, (ii) CB contains all points of B, and
(iii) the distance between CA and CB is at least equal to s times the radius
of CA.

We will assume that s is a constant, called the separation constant. The
following lemma follows easily from Definition 1.

Lemma 8 Let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| ≤ (1 + 4/s) · |pq|, and (ii) |px| ≤ (2/s) · |pq|.

Definition 2 ([7]) Let S be a set of n points in Rd, and s > 0 a real number.
A well-separated pair decomposition (WSPD) for S (w.r.t. s) is a sequence
of pairs of non-empty subsets of S,

{A1, B1}, {A2, B2}, . . . , {A`, B`},

such that

1. Ai ∩Bi = ∅, for all i = 1, 2, . . . , `,

2. for any two distinct points p and q of S, there is exactly one pair
{Ai, Bi} in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii)
p ∈ Bi and q ∈ Ai,

3. Ai and Bi are well-separated w.r.t. s, for all i = 1, 2, . . . , `.

The integer ` is called the size of the WSPD.

In [5], Callahan shows that a WSPD of size ` = O(n log n) can be com-
puted, such that each pair {Ai, Bi} contains at least one singleton set. This
WSPD is computed using a binary tree T , called the split tree. We briefly
describe the main idea. The split tree is similar to a kd -tree. Callahan starts
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by computing the bounding box of the points of S, which is successively split
by d-dimensional hyperplanes, each of which is orthogonal to one of the axes.
If a box is split, he takes care that each of the two resulting boxes contains
at least one point of S. As soon as a box contains exactly one point, the
process stops (for this box).

The resulting binary tree T stores the points of S at its leaves; one leaf
per point. Also, each node u of T is associated with a subset of S. We denote
this subset by Su; it is the set of all points of S that are stored in the subtree
of u.

The split tree T can be computed in O(n log n) time. Callahan shows
that, given T , a WSPD of size ` = O(n log n) can be computed in O(n log n)
time. Each pair {Ai, Bi} in this WSPD is represented by two nodes ui and
vi of T , i.e., we have Ai = Sui and Bi = Svi . Since at least one of Ai and Bi

is a singleton set, at least one of ui and vi is a leaf of T .

Theorem 4 ([5]) Let S be a set of n points in Rd, and s > 0 a separa-
tion constant. In O(n log n) time, we can compute a WSPD for S of size
O(n log n) such that each pair {Ai, Bi} contains at least one singleton set.

5.2 Approximating the bottleneck graph

Let b > 0 be a fixed real number, and let G be the Euclidean graph on
the point set S containing all edges of length at most b. In this section, we
show that we can use well-separated pairs to define a graph H whose stretch
factor approximates that of G. In Section 5.3, we will give an algorithm that
computes such a graph H having only O(n log n) edges.

Let s > 4 be a separation constant, and consider an arbitrary well-
separated pair decomposition {A1, B1}, {A2, B2}, . . . , {A`, B`} for the point
set S. For any index i, 1 ≤ i ≤ `, let xi ∈ Ai and yi ∈ Bi be two points for
which |xiyi| is minimum.

The graph H has the points of S as its vertices, and contains all edges
(xi, yi) whose length is less than or equal to b.

We first show that any two points p and q of S that have Euclidean
distance at most b are connected in H by a path whose length is at most a
constant times |pq|.
Lemma 9 Let p and q be any two points of S such that |pq| ≤ b. Then

|pq|H ≤
s+ 4

s− 4
· |pq|.
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Proof. The proof is basically the same as Callahan and Kosaraju’s proof
in [6] that the WSPD yields a spanner for S. We include the proof here in
order to be self-contained. Let t := (s+ 4)/(s− 4).

The proof is by induction on the rank of the distance |pq| in the sorted
sequence of distances in S that are at most b. To start the induction, the
claim clearly holds if p = q. So assume that p 6= q. Moreover, assume that
for any two points x and y of S with |xy| < |pq|, the inequality |xy|H ≤ t·|xy|
holds.

Let i be the index such that (i) p ∈ Ai and q ∈ Bi, or (ii) p ∈ Bi and
q ∈ Ai. We may assume w.l.o.g. that (i) holds. Our choice of the points xi
and yi implies that |xiyi| ≤ |pq| ≤ b. Hence, (xi, yi) is an edge in the graph
H, i.e., |xiyi|H = |xiyi|.

By Lemma 8, we have |pxi| ≤ (2/s) · |pq| < |pq|. Therefore, by the
induction hypothesis, we have |pxi|H ≤ t · |pxi|. By a symmetric argument,
we have |yiq| ≤ (2/s) · |pq| and |yiq|H ≤ t · |yiq|. Finally, by Lemma 8, we
have |xiyi| ≤ (1 + 4/s) · |pq|. It follows that

|pq|H ≤ |pxi|H + |xiyi|H + |yiq|H
≤ t · |pxi|+ |xiyi|+ t · |yiq|
≤ t · (2/s) · |pq|+ (1 + 4/s) · |pq|+ t · (2/s) · |pq|
= t · |pq|,

completing the proof.

The next lemma states that the stretch factors of G and H are approxi-
mately equal.

Lemma 10 Let t∗G and t∗H denote the exact stretch factors of the graphs G
and H, respectively. We have

s− 4

s+ 4
· t∗H ≤ t∗G ≤ t∗H .

Proof. We have to show that for any two points p and q in S, the two
inequalities

|pq|G ≤ |pq|H ≤
s+ 4

s− 4
· |pq|G

hold. Since H is a subgraph of G, it is clear that |pq|G ≤ |pq|H . The
second inequality clearly holds if |pq|G = ∞. So assume that |pq|G < ∞.
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Let p = p0, p1, . . . , pj = q be a shortest path in G between p and q. For
each i, 0 ≤ i < j, we have |pipi+1| ≤ b. Hence, by Lemma 9, we have
|pipi+1|H ≤ (s+ 4)/(s− 4) · |pipi+1|. It follows that

|pq|H ≤
j−1∑
i=0

|pipi+1|H ≤
s+ 4

s− 4
·
j−1∑
i=0

|pipi+1| =
s+ 4

s− 4
· |pq|G.

5.3 Computing the approximation graph H

We saw in the previous subsection that the graph H approximates the bottle-
neck graph G. In this section, we show how this graph H can be computed if
we use an appropriate WSPD. Consider a WSPD {A1, B1}, {A2, B2}, . . . ,
{A`, B`} in which each pair {Ai, Bi} contains at least one singleton set.
By Theorem 4, such a WSPD of size ` = O(n log n) can be computed in
O(n log n) time.

The main problem is that we have to compute for each pair {Ai, Bi} in
this WSPD, the points xi ∈ Ai and yi ∈ Bi for which |xiyi| is minimum.
Hence, if Ai is a singleton set, i.e., Ai = {xi}, then we have to compute a
nearest-neighbor yi of xi in the set Bi. We will show that by traversing the
split tree T that gives rise to this WSPD, all these pairs (xi, yi), 1 ≤ i ≤ `,
can be computed efficiently.

Recall that for any node u of the split tree T , we denote by Su the subset
of S that is stored in the subtree of u. Also, each pair {Ai, Bi} in the WSPD
is defined by two nodes ui and vi of T . That is, Ai = Sui and Bi = Svi .

We store with each node u of T , a list of all leaves v such that the two
nodes u and v define a pair in the WSPD. (Hence, v defines a singleton set
in this pair.)

Let DS be a data structure that stores a set of points in Rd, that supports
nearest-neighbor queries of the form “given a query point q ∈ Rd, find a point
in the set that is nearest to q”, and that supports insertions of points.

The algorithm that computes the required closest pair of points in each
well-separated pair of point sets, traverses the nodes of T in postorder. To
be more precise, let u be an internal node of T , and let u′ and u′′ be the two
children of u. At the moment when node u is visited, the nodes u′ and u′′ store
nearest-neighbor data structures DS (u′) and DS (u′′) storing the point sets
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Su′ and Su′′ , respectively. If |Su′| ≤ |Su′′|, then we insert all points of Su′ into
DS (u′′). Otherwise, all points of Su′′ are inserted into DS (u′). Hence, after
these insertions, we have a nearest-neighbor data structure DS (u) storing
the point set Su. For each leaf v of T such that u and v define a pair in the
WSPD, we query DS (u) to find a point of Su that is nearest to the point
stored at leaf v. The complete algorithm is given in Figure 1.

If we call traverse(r), where r is the root of the split tree T , then we
get all pairs (xi, yi), 1 ≤ i ≤ `. Clearly, the approximation graph H can be
computed from these pairs, in time O(`) = O(n log n).

We analyze the running time of algorithm traverse(r), for r being the
root of T . The number of nearest-neighbor queries is equal to the number
` of pairs in the WSPD. For any internal node u of T , the data structure
DS (u) is obtained by inserting the points from the child’s structure whose
subtree is smaller, into the structure of the other child of u. It is easy to
prove that in this way, each point of S is inserted at most log n times. The
total number of insertions is therefore bounded by O(n log n).

Let QNN (n0) and INN (n0) denote the query and insertion times of the
data structure DS , respectively, if it stores a set of n0 points. Since n0 ≤ n
at any moment during the algorithm, we have proved the following result.

Lemma 11 Let S be a set of n points in Rd. After

O (n(QNN (n) + INN (n)) log n)

preprocessing time, we can compute the approximation graph H of any bot-
tleneck graph G, in O(n log n) time.

In order to apply Lemma 11, we need to specify the data structure
DS . This data structure stores a set of points in Rd, and supports nearest-
neighbor queries and insertions of points. We can obtain such a semi-dynamic
data structure by applying Bentley’s logarithmic method, see [3, 4]. This
technique transforms an arbitrary static data structure for nearest-neighbor
queries into one that also supports insertions of points. To be more specific,
let DS s be a static data structure storing a set of n points in Rd, that supports
nearest-neighbor queries in Qs

NN (n) time, and that can be built in P s
NN (n)

time. The logarithmic method transforms DS s into a semi-dynamic structure
DS , in which nearest-neighbor queries can be answered in O(Qs

NN (n) log n)
time, and in which points can be inserted in O((P s

NN (n)/n) log n) amortized
time.
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Corollary 1 Let S be a set of n points in R
d, let β ≥ 1 be an integer

constant, and let ε be a real constant, such that 0 < ε ≤ 1/2. After

O
(
nQs

NN (n) log2 n+ P s
NN (n) log2 n

)
preprocessing time, we can compute a (c1, c2)-approximate stretch factor,
where c1 = 2β(1+ε)2 and c2 = 1+ε, of any bottleneck graph in O(n1+1/β log3 n)
expected time.

Proof. We apply Lemma 11 with separation constant s := 4 + 8/ε. The
bound on the preprocessing time follows from Lemma 11. Consider any
bottleneck graph G, and let H be the corresponding approximation graph.
After the preprocessing, we can compute H in O(n log n) time. Let t∗G and t∗H
be the exact stretch factors of G and H, respectively. Applying Lemma 10,
and noting that (s+ 4)/(s− 4) = 1 + ε, we have

1

1 + ε
· t∗H ≤ t∗G ≤ t∗H . (4)

Since the number of edges of H is bounded by O(n log n), Theorem 1 implies
that we can compute, in O(n1+1/β log3 n) expected time, a real number t,
such that

1

2β(1 + ε)
· t ≤ t∗H ≤ (1 + ε)t. (5)

Combining (4) and (5), it follows that

1

2β(1 + ε)2
· t ≤ t∗G ≤ (1 + ε)t.

5.4 Putting the pieces together

We are now ready to prove the main result of this paper.

Theorem 5 Let S be a set of n points in Rd, let β ≥ 1 be an integer constant,
and let ε be a real constant, such that 0 < ε ≤ 1/2. In

O
(
nQs

NN (n) log2 n+ P s
NN (n) log2 n+ n1+1/β log5 n+ Tsel(n) log n

)
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expected time, we can compute a data structure of size O(log n), such that for
any real number b > 0, we can compute, in O(log log n) time, a real number
t, such that

1

4β2(1 + ε)6
t ≤ t∗ ≤ 2β(1 + ε)5t,

where t∗ is the exact stretch factor of the Euclidean graph containing all edges
of length at most b.

Proof. The claims on the size of the data structure, the query time, and the
approximation ratio follow from Theorem 3 and Corollary 1. By Theorem 3,
the time needed to build the data structure is bounded by

O
(
TMST (n) + TapproxSF (n) log2 n+ Tsel(n) log n

)
.

By Corollary 1, we have

TapproxSF (n) log2 n = O
(
nQs

NN (n) log2 n+ P s
NN (n) log2 n+ n1+1/β log5 n

)
.

(6)
Consider the closest pairs (xi, yi), 1 ≤ i ≤ ` = O(n log n), that we computed
in Section 5.3. Callahan [5] has shown that the graph containing these pairs
as edges contains a minimum spanning tree of the point set. Hence, given
these edges, we can use Prim’s algorithm to compute a minimum spanning
tree of S, in O(n log n) time. (See [9].) Therefore, TMST (n) is bounded from
above by the expression in (6).

We conclude this section by giving concrete bounds on the preprocessing
time. We start with the case when the dimension d is equal to two. The
static nearest-neighbor problem can be solved using Voronoi diagrams, and a
data structure for point location queries, see Preparata and Shamos [14]. For
this data structure, we have Qs

NN (n) = O(log n), and P s
NN (n) = O(n log n).

Chan [8] gives a randomized distance selection algorithm, whose expected
running time Tsel(n) is bounded by O(n4/3 log5/3 n). Hence, if d = 2, the
expected time needed to build the data structure of Theorem 5 is bounded
by O(n1+1/β log5 n+n4/3 log8/3 n). If β = 2, then the expected preprocessing
time is roughly n3/2. For β = 3, it is roughly n4/3. For larger values of
β, the time bound remains roughly n4/3, but then the approximation ratio
increases.

Assume that d ≥ 3. Agarwal, in a personal communication to Dickerson
and Eppstein [10], has shown that

Tsel(n) = O(n2(1−1/(d+1))+η), (7)
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where η is an arbitrarily small positive real constant. (The constant in the
Big-Oh bound depends on η.) Agarwal and Matoušek [1], and Matoušek and
Schwarzkopf [12] have given a static nearest-neighbor data structure for which
nQs

NN (n) log2 n+ P s
NN (n) log2 n is asymptotically smaller than the quantity

on the right-hand side of (7). Hence, the expected time needed to build the
data structure of Theorem 5 is bounded from above by O(n1+1/β log5 n +
n2(1−1/(d+1))+η). This becomes O(n2(1−1/(d+1))+η), i.e., subquadratic, if we
take β = 2. Again, for larger values of β, we get the same time bound, but
a larger approximation ratio.

6 Concluding remarks

We have given a subquadratic algorithm for preprocessing a set S of n points
in Rd into a data structure of size O(log n) such that for an arbitrary query
value b > 0, we can, in O(log log n) time, compute an approximate stretch
factor of the bottleneck graph on S containing all edges of length at most
b. This result was obtained by (i) approximating the sequence of

(
n
2

)
differ-

ent stretch factors of all possible bottleneck graphs, and (ii) approximating
bottleneck graphs by graphs containing only O(n log n) edges.

Our algorithms need exact solutions for computing minimum spanning
trees, and solving nearest-neighbor queries, distance selection queries, and
distance ranking queries. It would be interesting to know if approximation
algorithms for these problems can be used to speed up the preprocessing
time.
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Algorithm traverse(u): (∗ u is a node of T ∗)
if u is a leaf
then x := point stored at u;

build a data structure DS (u) for x;
for each leaf v such that {Su, Sv} is a pair in the WSPD
do y := point stored at v;

report the pair (x, y)
endfor;

else u′ := left child of u;
u′′ := right child of u;
traverse(u′);
traverse(u′′);
if |Su′| ≤ |Su′′|
then insert each element of DS (u′) into DS (u′′);

DS (u) := DS (u′′);
discard DS (u′)

else insert each element of DS (u′′) into DS (u′);
DS (u) := DS (u′);
discard DS (u′′)

endif;
for each leaf v such that {Su, Sv} is a pair in the WSPD
do y := point stored at v;

use DS (u) to find a point x in Su that is nearest to y;
report the pair (x, y)

endfor
endif

Figure 1: The algorithm for computing all closest pairs (xi, yi), 1 ≤ i ≤ `.

24


