## Data Structures

Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu

#### · Review

## How to compare big-Ohs?

We say that f(n) = O(g(n)) if
□ There exists positive integer n<sub>0</sub>, and
□ A positive constant c, such that
□ For all n ≥ n<sub>0</sub>,

 $f(n) \leftarrow c g(n)$ 



- In other words, for all large enough values of n, there exists a constant c, such that
   f(n) is always bounded from above by cq(n)
- Note that the condition may be violated for a finitely many small values of n

#### Summary

- To prove f(n) = O(g(n))
  - 1. Pick a value of c
  - 2. Find a  $n_0$  such that
  - 3.  $f(n) \le c g(n)$  for all  $n \ge n_0$
  - 4. If not, go back to step 1 and refine value of c

#### • To prove $f(n) \neq O(g(n))$

- Assume that c is fixed to some positive value
- $\Box$  And assume there exists a n<sub>0</sub> such that
- □  $f(n) \le c g(n)$  for all  $n \ge n_0$
- Now try to prove a contradiction to this claim

## Challenging Cases

MAXSUBSEQSUM(A) Initialize maxSum to O N := size(A)For i = 1 to N do For j = i to N do Initialize thisSum to O for k = i to j do add A[k] to thisSum if (thisSum > maxSum) then update maxSum

$$\sum_{k=i}^{j} 1 = j - i + 1$$

$$\sum_{j=i}^{N} (j-i+1) = \frac{(N-i+1)(N-i+2)}{2}$$

$$\sum_{i=1}^{N} \frac{(N-i+1)(N-i+2)}{2}$$

$$=\sum_{i=1}^{N} \frac{i^2}{2} - (N + \frac{3}{2})\sum_{i=1}^{N} i + \frac{1}{2}(N^2 + 3N + 2)\sum_{i=1}^{N} 1$$
$$= \frac{N^3 + 3N^2 + 2N}{6} = O(N^3)$$

8/24/16

#### Review

Example 1

Example 2

SampleMethod1 (N) For i = 0 to N do For j = i to N do sum = i + j Report sum

Big Oh:

Big Oh: \_\_\_\_

}

#### Review

#### Example 3

}

Big Oh:

Example 4

public void sampleMethod3() {
 System.out.println("This is sample 3.");

```
int b = 10;

int c = 15;

int d = b - c;

b = b * c;

d = d * b;

c = d + d;

b = c + d + b + d;

System.out.println(b + " " + c + " " + d);
```

public void sampleMethod4(int n) {

for(int i = 0; i <= n; i++)
for(int j = 1; j <= n; j = j \* 2)
for(k = 0; k <= n/2; k++)
System.out.println(i + j + k);
}</pre>

Big Oh: \_\_\_\_\_

#### Linear Data Structures

#### Linear Data Structures

# ListsArrayList

LinkedList





## Applications of Stacks

- **Balancing** Parentheses
  - Is this balanced?
    - (()((()())))))
- Push when you see an open parenthesis.
- Pop when you see a closed one.
- □ If stack empties at end of string, it is balanced.
- Else, it is not.
- Postfix Expressions
  - How to evaluate this:
    - 42\*5+7+1.5\*

How to deal with (unary) negative signs such as 4 \* (-5)?

- Push when you see a number
- Pop two when you see an operator, operate and push result

## Applications of Stacks ... 2

- Infix to Postfix Conversion
  - How to convert this:
    - Infix: ((4 \* 2) + 5 + 7) \* 1.5 to Postfix: 4 2 \* 5 + 7 + 1.5 \*
  - □ Infix: 4 \* 2
  - Idea: Push operators on a stack and print operands
  - □ Infix: 4 + 2 + 3
  - Idea: Before pushing operators, pop previous operator
  - □ Infix: 4 + 2 \* 5 + 3
  - Idea: Before pushing operators, pop all operators of higher or equal precedence
  - □ Infix: 4 \* (2 + 3) + 5
  - Idea: Push open parenthesis on stack. When closed parenthesis is encountered, pop stack until open parenthesis is popped

### Applications of Queues

Servers

Disk server, File Server, Print Server, ...

#### **Hierarchical Data Structures**

#### Trees were invented to ...

#### Store hierarchical information

- File system
- Software Hierarchy
- Administrative Hierarchy
- Geographical Hierarchy
- Decision trees
- Parse trees
- Family genealogy
- Tree of life

- To deal with inefficiencies of Linear Data Structures and to store dynamic information
  - To be explained later!



#### Tree

Def: Connected hierarchical structure without cycles

- Def: A tree is an abstract mathematical object with
  - Set of nodes, V, with special root node, r
  - Set of <u>directed</u> edges, E, such that for each edge e in E, e = (u, v), where u is parent of v, or v is a child of u, and
  - Every node has a <u>unique</u> parent except the root node, r.
- Def: A binary tree is a tree where every node has at most two children
- Def: A subtree of a tree, T = (V,E) is the tree rooted at some node from V.

## Tree Terminology

- Root: node with no parent
  - Leaf and internal node: node with no child and with at least one
- Parent, Child: each directed edge defines parent-child
- Sibling: a node that shares the same parent
- Ancestor (Descendant): all nodes on path to root (leaf)
- Left child, right child: if children are ordered, then this terminology is relevant in binary trees
- Full binary tree: each node has 2 children or is a leaf
- Complete binary tree: tree filled level by level, left to right

#### Tree Terminology



- Height of tree (or subtree): length of longest path from root to leaf
- Like a linked list, a tree can be defined recursively
  - Subtrees rooted at nodes are also trees



#### Properties of Trees

- If n is the number of nodes in a tree, then
   Number of edges in a tree = n-1
- Number of leaves in a full binary tree = 1 more than number of internal nodes
- Number of empty subtrees = n+1

#### **Implementing Binary Trees**

#### Generalizing linked lists

- Instead of next/prev pointers, each node has 2 pointers
   Left and right child; if needed, pointer to parent
- Can be implemented using Arrays



#### Tree Traversals

#### Inorder traversal

- Left subtree Node Right subtree
- **6**, 4, 2, 7, 5, 8, 1, 3

# Preorder traversal Node - Left subtree - Right subtree 1, 2, 4, 6, 5, 7, 8, 3

Postorder traversal
Left subtree - Right subtree - Node
6, 4, 7, 8, 5, 2, 3, 1



#### Implementation

static void preorder(BinaryNode rt) {

if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root of subtree
preorder(rt.left()); // Process all nodes in left subtree
preorder(rt.right()); // Process all nodes in right subtree

#### Tree Traversal Applications

- Expression Parse trees
  Inorder traversal?
  Postorder traversal?
- Printing directory structure
   Figure 4.7 in Weiss book



https://people.eecs.berkeley.edu/~bh/ss-pics/parse0.jpg

### Binary Search Trees

Binary Tree where each node stores a value

- Value stored at node is larger than all values stored in nodes of left subtree
- Value stored at node is smaller than all values stored in nodes of right subtree



COP 3530: DATA STRUCTURES

9/07/16

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/insertEx.bmp