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How to compare big-Ohs? 
u  We say that f(n) = O(g(n)) if  

q  There exists positive integer n0, and  
q  A positive constant c, such that 
q  For all n ≥ n0, 

   f(n) <= c g(n)  

u  In other words, for all large enough values of n, there 
exists a constant c, such that  
q  f(n) is always bounded from above by cg(n)  

u  Note that the condition may be violated for a finitely 
many small values of n 

8/24/16 COP 3530: DATA STRUCTURES 

3.1 Asymptotic notation 45
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Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.



Summary 
u  To prove f(n) = O(g(n)) 

1.  Pick a value of c  
2.  Find a n0 such that  
3.  f(n) ≤ c g(n) for all n ≥ n0 

4.  If not, go back to step 1 and refine value of c 

u  To prove f(n) ≠ O(g(n)) 
q  Assume that c is fixed to some positive value 
q  And assume there exists a n0 such that  
q  f(n) ≤ c g(n) for all n ≥ n0 

q  Now try to prove a contradiction to this claim 
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Challenging Cases 
 

MaxSubseqSum(A) 
Initialize maxSum to 0 
N := size(A) 
For i = 1 to N do 
      For j = i to N do 

 Initialize thisSum to 0 
            for k = i to j do 
                    add A[k] to thisSum 
            if (thisSum > maxSum) then 

          update maxSum 
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Review 
Example 1 

 

SampleMethod1 (N) 
For i = 0 to N do 
     For j = i to N do 
          sum = i + j 
Report sum 

 

Big Oh: ____________ 

 

Example 2 

 

public void sampleMethod2(int[] a) 
{ 
      intindex = 0; 
      for(int i = a.length-1; i >= 0; i--) 

 if(a[i] > target && a.length > 0) 
       index = i; 

} 

Big Oh: ____________ 
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Review 
Example 3 

 
public void sampleMethod3() { 
      System.out.println(“This is sample 3.”);

  
      int b = 10; 
      int c = 15; 
      int d = b – c; 
      b = b * c; 
      d = d * b; 
      c = d + d; 
      b = c + d + b + d; 
      System.out.println(b + “ “ + c + “ “ + d); 
} 

Big Oh: ____________ 

 

Example 4 

 
public void sampleMethod4(int n) { 
 
for(int i = 0; i <= n; i++) 
     for(int j = 1; j <= n; j = j * 2) 
          for(k = 0; k <= n/2; k++) 
               System.out.println(i + j + k); 
} 

 

Big Oh: ____________ 
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Linear	  Data	  Structures	  



Linear Data Structures 
u  Lists  

q  ArrayList 
q  LinkedList 

u  Stacks 

u  Queues 
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Applications of Stacks 
u  Balancing Parentheses 

q  Is this balanced? 
•  (()((()()())())) 

q  Push when you see an open parenthesis. 
q  Pop when you see a closed one. 
q  If stack empties at end of string, it is balanced. 
q  Else, it is not.  

u  Postfix Expressions 
q  How to evaluate this: 
•  4 2 * 5 + 7 + 1.5 * 

q  Push when you see a number 
q  Pop two when you see an operator, operate and push result 
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How to deal with (unary) negative 
signs such as 4 * (-5)? 



Applications of Stacks … 2 
u  Infix to Postfix Conversion 

q  How to convert this: 
•  Infix: ((4 * 2) + 5 + 7) * 1.5 to Postfix: 4 2 * 5 + 7 + 1.5 * 

q  Infix: 4 * 2 
q  Idea: Push operators on a stack and print operands 
q  Infix: 4 + 2 + 3 
q  Idea: Before pushing operators, pop previous operator 
q  Infix: 4 + 2 * 5 + 3 
q  Idea: Before pushing operators, pop all operators of higher or 

equal precedence 
q  Infix: 4 * (2 + 3) + 5 
q  Idea: Push open parenthesis on stack. When closed parenthesis 

is encountered, pop stack until open parenthesis is popped 
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Applications of Queues 
u  Servers  

q  Disk server, File Server, Print Server, … 
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Hierarchical	  Data	  Structures	  



Trees were invented to … 
u  Store hierarchical information 

q  File system  
q  Software Hierarchy 
q  Administrative Hierarchy 
q  Geographical Hierarchy 
q  Decision trees 
q  Parse trees 
q  Family genealogy 
q  Tree of life 
q  … 

u  To deal with inefficiencies of Linear Data Structures and to 
store dynamic information 
q  To be explained later! 
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Different Kinds of Trees 



Tree 
u  Def: Connected hierarchical structure without cycles 

u  Def: A tree is an abstract mathematical object with 
q  Set of nodes, V, with special root node, r 
q  Set of directed edges, E, such that for each edge e in E,  

e = (u, v), where u is parent of v, or v is a child of u, and  
q  Every node has a unique parent except the root node, r.  

u  Def: A binary tree is a tree where every node has at 
most two children 

u  Def: A subtree of a tree, T = (V,E) is the tree rooted at 
some node from V.  
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Tree Terminology 
u  Root: node with no parent 
u  Leaf and internal node: node with no child and with at 

least one 
u  Parent, Child: each directed edge defines parent-child 
u  Sibling: a node that shares the same parent 
u  Ancestor (Descendant): all nodes on path to root (leaf) 
u  Left child, right child: if children are ordered, then this 

terminology is relevant in binary trees 
u  Full binary tree: each node has 2 children or is a leaf 
u  Complete binary tree: tree filled level by level, left to 

right 
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Tree Terminology 
u  Depth of node: length of path 

from root to node 
u  Height of tree (or subtree): 

length of longest path from 
root to leaf 

u  Like a linked list, a tree can be 
defined recursively 
q  Subtrees rooted at nodes are 

also trees 
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Properties of Trees 
u  If n is the number of nodes in a tree, then 

q  Number of edges in a tree = n-1 

u  Number of leaves in a full binary tree = 1 more than 
number of internal nodes 

u  Number of empty subtrees = n+1 
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Implementing Binary Trees 
Generalizing linked lists 
u  Instead of next/prev pointers, each node has 2 pointers 

q  Left and right child; if needed, pointer to parent 

Can be implemented using Arrays 

u  To be discussed later! 

9/07/16 COP 3530: DATA STRUCTURES 

left data right 
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Tree Traversals 
u  Inorder traversal 

q  Left subtree – Node – Right subtree 
q  6, 4, 2, 7, 5, 8, 1, 3 

u  Preorder traversal 
q  Node – Left subtree – Right subtree 
q  1, 2, 4, 6, 5, 7, 8, 3 

u  Postorder traversal 
q  Left subtree – Right subtree – Node 
q  6, 4, 7, 8, 5, 2, 3, 1  
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https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/non_rec_trav.bmp 



Implementation 
static void preorder(BinaryNode rt) { 

  if (rt == null) return; // Empty subtree - do nothing 

  visit(rt);                    // Process root of subtree 

  preorder(rt.left());    // Process all nodes in left subtree 

  preorder(rt.right());   // Process all nodes in right subtree 

} 
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Tree Traversal Applications 
u  Expression Parse trees 

q  Inorder traversal? 
q  Postorder traversal? 

u  Printing directory structure 
q  Figure 4.7 in Weiss book 
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https://people.eecs.berkeley.edu/~bh/ss-pics/parse0.jpg 



Binary Search Trees 
u  Binary Tree where each node stores a value 

u  Value stored at node is larger than all values stored in 
nodes of left subtree 

u  Value stored at node is smaller than all values stored in 
nodes of right subtree 
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