Data Structures

Giri Narasimhan
Office: ECS 254A
Phone: x-3748

~ giri@cs.fiu.edu

9/07/16 B ° COP 3530: DATA STRUCTURES

How to compare big-Ohs?

cg(n)

¢ We say that f(n) = O(g(n)) if
O There exists positive integer n,, and
Q0 A positive constant ¢, such that
a Forall n2n,

f(n) <= c g(n) - :
f(n) = O(g(m)

¢ Inother words, for all large enough values of n, there
exists a constant c, such that

Q f(n) is always bounded from above by cg(n)

¢ Note that the condition may be violated for a finitely
many small values of n

COP 3530: DATA STRUCTURES 8/24/16

Summary

¢ To prove f(n) = O(g(n))
1. Pick a value of ¢
2. Find a ny such that
3. f(n)<cg(n)forallnzn,
4. If not, go back to step 1 and refine value of ¢

¢ To prove f(n) 2 O(g(n))
O Assume that c is fixed to some positive value
O And assume there exists a ny such that
a f(n)<cg(n) forall n2n,
O Now try to prove a contradiction to this claim

COP 3530: DATA STRUCTURES 8/24/16

Challenging Cases

MAXSUBSEQSUM(A)
Initialize maxSum to O
N := size(A)
Fori=1toNdo
For j=ito Ndo
Initialize thisSum to O
for k=i to j do

add A[k] to thisSum
if (thisSum > maxSum) then
update maxSum

d 1=j—i+1

J
k=1

SN i 1) = (N —i+1)(N—i+2)

N3+3N2+2N
6

= O(N?)

COP 3530: DATA STRUCTURES 8/24/16

Example 1

SampleMethod1 (N)
Fori=0to N do
For j=itoNdo
sum =i+ |
Report sum

Big Oh:

Review

Example 2

public void sampleMethod2(int[] a)

{
intindex = O;
for(int i = a.length-1; i >= O; i--)
if(ai] > target && alength > 0)
index = i;
}
Big Oh:

COP 3530: DATA STRUCTURES 9/01/16

Review

Example 3

public void sampleMethod3() {
System.out.printIn(* This is sample 3.");

int b = 10;

int ¢ = 15;

intd=b-c;

bi=pE c:

d=d* b;

c=d+d;

b=c+d+b+d;

System.out.printin(b +* " + c +" " + d);
}

Big Oh:

Example 4

public void sampleMethod4(int n) {

for(int i = O; i <= n; i++)
for(int j=1, j<=n; j=j*2)
for(k = O; k <= n/2; k++)

System.out.printin(i + j + k);

Big Oh:

COP 3530: DATA STRUCTURES

9/01/16

¥ - Linear Data Structures

Linear Data Structures

¢ Lists
Q Arraylist
a LinkedList

¢ Stacks
¢ Queues

COP 3530: DATA STRUCTURES

9/01/16

Applications of Stacks

¢ Balancing Parentheses

a

oA ' B M) 0

¢

U

il B

ostfix Expressions

Is this balanced?

a(0/((0010)(0))

Push when you see an open parenthesis.

Pop when you see a closed one.

If stack empties at end of string, it is balanced.
Else, it is not.

How 1o evaluate this: How to deal with (unary) negative
8 42* 57+ 15

Push when you see a number
Pop two when you see an operator, operate and push result

signs such as 4 * (-5)!

COP 3530: DATA STRUCTURES 9/01/16

Applications of Stacks ... 2

® Infix to Postfix Conversion

d

o000 0C

DU

How to convert this:

® Infix: ((4*2)+5+7)*15t0o Postfix:42*5+7+15*
Infix: 4 * 2

Idea: Push operators on a stack and print operands
Infix: 4+ 2 + 3

Idea: Before pushing operators, pop previous operator
Infix:4+2*5+3

Idea: Before pushing operators, pop all operators of higher or
equal precedence

Infix:4*(2+3)+5

Idea: Push open parenthesis on stack. When closed parenthesis
is encountered, pop stack until open parenthesis is popped

COP 3530: DATA STRUCTURES 9/01/16

Applications of Queues

¢ Servers
Q Disk server, File Server, Print Server, ...

COP 3530: DATA STRUCTURES 9/01/16

Hierarchical Data Structures

Trees were invented to ..

¢ Store hierarchical information
File system

Software Hierarchy
Administrative Hierarchy
Geographical Hierarchy
Decision trees

Parse trees

Family genealogy

Tree of life

cooo0oodDp00p

& To deal with inefficiencies of Linear Data Structures and to
store dynamic information

0 To be explained later!

COP 3530: DATA STRUCTURES 9/01/16

Tree of Life

Plantc

'_| Gavin ARTHUR I

PR TN

Decision Tree Model
for Car Mileage Prediction

Weight == heavy ?

“__ /\ ar
. Different Kinds of Trees

[High miIeageJ ‘ Horsepower <= 86 ? ‘

. Al ~
Decision Tree Model
for Car Mileage Prediction

Yes

’ Weight == heavy ? ‘

Yes No

[High milzgxage]

High mileage | Horsepower <= 86 ? ‘

............
ssssss

Yes No

High mileage

nnnnnnnnnnnnn

Tree

Def: Connected hierarchical structure without cycles

Def: A tree is an abstract mathematical object with
O Set of nodes, V, with special root node, r

O Set of directed edges, E, such that for each edge e in E,
e = (u, v), where u is parent of v, or v is a child of u, and

0 Every node has a unique parent except the root node, r.

Def: A binary tree is a tree where every node has at
most two children

Def: A subtree of a tree, T = (V,E) is the tree rooted at
some node from V.

COP 3530: DATA STRUCTURES 9/01/16

¢ o

L R R R -

¢ o

Tree Terminology

Root: node with no parent

Leaf and internal node: node with no child and with at
least one

Parent, Child: each directed edge defines parent-child
Sibling: a node that shares the same parent
Ancestor (Descendant): all nodes on path to root (leaf)

Left child, right child: if children are ordered, then this
terminology is relevant in binary trees

Full binary tree: each node has 2 children or is a leaf

Complete binary tree: tree filled level by level, left to
right

COP 3530: DATA STRUCTURES 9/01/16

Tree Terminology

¢ Depth of node: length of path
from root to node

¢ Height of tree (or subtree).
length of longest path from

root to leaf e
® Like a linked list, a tree can be / \
defined recursively g g2
O Subtrees rooted at nodes are / \ \
also trees Neitoos helont0 Moot 1

root node /

inner node depth 3
height 0
leaf node

COP 3530: DATA STRUCTURES 9/01/16

Properties of Trees

¢ If nis the number of nodes in a tree, then
O Number of edges in a tree = n-1

¢ Number of leaves in a full binary tree = 1 more than
number of internal nodes

¢ Number of empty subtrees = n+l

COP 3530: DATA STRUCTURES 9/01/16

Implementing Binary Trees

Generalizing linked lists

¢ Instead of next/prev pointers, each node has 2 pointers
0 Left and right child; if needed, pointer to parent

Can be implemented using Arrays

& To be discussed later!

el

59 27

L~ 42

COP 3530: DATA STR

86

Tree Traversals

¢ TInorder traversal
O Left subtree - Node - Right subtree
6242 7,5,8,1,3

¢ Preorder traversal
O Node - Left subtree - Right subtree
@51, 2,4.6,5,7,8,3 (1)

¢ Postorder traversal (2 O
O Left subtree - Right subtree - Node (4 (52

Ls674 7.8.5,2 33 olNoORROo
https://www.cs.cmu.edu/ adamchik/15-121/lectures/Trees/pix/non_rec_trav.bmp

COP 3530: DATA STRUCTURES 9/01/16

Implementation

static void preorder(BinaryNode rt) {
if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root of subtree
preorder(rt.left()); // Process all nodes in left subtree

preorder(rt.right()). // Process all nodes in right subtree

COP 3530: DATA STRUCTURES 9/01/16

Tree Traversal Applications

¢ Expression Parse trees
A Inorder traversal?
Q Postorder traversal?

¢ Printing directory structure
O Figure 4.7 in Weiss book

https://people.eecs.berkeley.edu/ ™ bh/ss-pics/parse.jpg

COP 3530: DATA STRUCTURES 9/01/16

Binary Search Trees

¢ Binary Tree where each node stores a value

¢ Value stored at node is larger than all values stored in
nodes of left subtree

€ Value stored at node is smaller than all values stored in
nodes of right subtree

COP 3530: DATA STRUCTURES 9/01/16

https://www.cs.cmu.edu/ adamchik/15-121/lectures/Trees/pix/insertEx.bmp

