
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Review

9/07/16 COP 3530: DATA STRUCTURES 2

How to compare big-Ohs?
u  We say that f(n) = O(g(n)) if

q  There exists positive integer n0, and
q  A positive constant c, such that
q  For all n ≥ n0,

 f(n) <= c g(n)

u  In other words, for all large enough values of n, there
exists a constant c, such that
q  f(n) is always bounded from above by cg(n)

u  Note that the condition may be violated for a finitely
many small values of n

8/24/16 COP 3530: DATA STRUCTURES

3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

Summary
u  To prove f(n) = O(g(n))

1.  Pick a value of c
2.  Find a n0 such that
3.  f(n) ≤ c g(n) for all n ≥ n0

4.  If not, go back to step 1 and refine value of c

u  To prove f(n) ≠ O(g(n))
q  Assume that c is fixed to some positive value
q  And assume there exists a n0 such that
q  f(n) ≤ c g(n) for all n ≥ n0

q  Now try to prove a contradiction to this claim

8/24/16 COP 3530: DATA STRUCTURES

Challenging Cases

MaxSubseqSum(A)
Initialize maxSum to 0
N := size(A)
For i = 1 to N do
 For j = i to N do

 Initialize thisSum to 0
 for k = i to j do
 add A[k] to thisSum
 if (thisSum > maxSum) then

 update maxSum

jX

k=i

1 = j � i+ 1

NX

j=i

(j � i+ 1) =
(N � i+ 1)(N � i+ 2)

2

NX

i=1

(N � i+ 1)(N � i+ 2)

2

=
NX

i=1

i2

2
� (N +

3

2
)

NX

i=1

i+
1

2
(N2 + 3N + 2)

NX

i=1

1

=
N3 + 3N2 + 2N

6
= O(N3)

1

8/24/16 COP 3530: DATA STRUCTURES

Review
Example 1

SampleMethod1 (N)
For i = 0 to N do
 For j = i to N do
 sum = i + j
Report sum

Big Oh: ____________

Example 2

public void sampleMethod2(int[] a)
{
 intindex = 0;
 for(int i = a.length-1; i >= 0; i--)

 if(a[i] > target && a.length > 0)
 index = i;

}

Big Oh: ____________

9/07/16 COP 3530: DATA STRUCTURES

Review
Example 3

public void sampleMethod3() {
 System.out.println(“This is sample 3.”);

 int b = 10;
 int c = 15;
 int d = b – c;
 b = b * c;
 d = d * b;
 c = d + d;
 b = c + d + b + d;
 System.out.println(b + “ “ + c + “ “ + d);
}

Big Oh: ____________

Example 4

public void sampleMethod4(int n) {

for(int i = 0; i <= n; i++)
 for(int j = 1; j <= n; j = j * 2)
 for(k = 0; k <= n/2; k++)
 System.out.println(i + j + k);
}

Big Oh: ____________

9/07/16 COP 3530: DATA STRUCTURES

Linear	 Data	 Structures	

Linear Data Structures
u  Lists

q  ArrayList
q  LinkedList

u  Stacks

u  Queues

9/07/16 COP 3530: DATA STRUCTURES

Applications of Stacks
u  Balancing Parentheses

q  Is this balanced?
•  (()((()()())()))

q  Push when you see an open parenthesis.
q  Pop when you see a closed one.
q  If stack empties at end of string, it is balanced.
q  Else, it is not.

u  Postfix Expressions
q  How to evaluate this:
•  4 2 * 5 + 7 + 1.5 *

q  Push when you see a number
q  Pop two when you see an operator, operate and push result

9/07/16 COP 3530: DATA STRUCTURES

How to deal with (unary) negative
signs such as 4 * (-5)?

Applications of Stacks … 2
u  Infix to Postfix Conversion

q  How to convert this:
•  Infix: ((4 * 2) + 5 + 7) * 1.5 to Postfix: 4 2 * 5 + 7 + 1.5 *

q  Infix: 4 * 2
q  Idea: Push operators on a stack and print operands
q  Infix: 4 + 2 + 3
q  Idea: Before pushing operators, pop previous operator
q  Infix: 4 + 2 * 5 + 3
q  Idea: Before pushing operators, pop all operators of higher or

equal precedence
q  Infix: 4 * (2 + 3) + 5
q  Idea: Push open parenthesis on stack. When closed parenthesis

is encountered, pop stack until open parenthesis is popped

9/07/16 COP 3530: DATA STRUCTURES

Applications of Queues
u  Servers

q  Disk server, File Server, Print Server, …

9/07/16 COP 3530: DATA STRUCTURES

Hierarchical	 Data	 Structures	

Trees were invented to …
u  Store hierarchical information

q  File system
q  Software Hierarchy
q  Administrative Hierarchy
q  Geographical Hierarchy
q  Decision trees
q  Parse trees
q  Family genealogy
q  Tree of life
q  …

u  To deal with inefficiencies of Linear Data Structures and to
store dynamic information
q  To be explained later!

9/07/16 COP 3530: DATA STRUCTURES

9/07/16 COP 3530: DATA STRUCTURES

Different Kinds of Trees

Tree
u  Def: Connected hierarchical structure without cycles

u  Def: A tree is an abstract mathematical object with
q  Set of nodes, V, with special root node, r
q  Set of directed edges, E, such that for each edge e in E,

e = (u, v), where u is parent of v, or v is a child of u, and
q  Every node has a unique parent except the root node, r.

u  Def: A binary tree is a tree where every node has at
most two children

u  Def: A subtree of a tree, T = (V,E) is the tree rooted at
some node from V.

9/07/16 COP 3530: DATA STRUCTURES

Tree Terminology
u  Root: node with no parent
u  Leaf and internal node: node with no child and with at

least one
u  Parent, Child: each directed edge defines parent-child
u  Sibling: a node that shares the same parent
u  Ancestor (Descendant): all nodes on path to root (leaf)
u  Left child, right child: if children are ordered, then this

terminology is relevant in binary trees
u  Full binary tree: each node has 2 children or is a leaf
u  Complete binary tree: tree filled level by level, left to

right
9/07/16 COP 3530: DATA STRUCTURES

Tree Terminology
u  Depth of node: length of path

from root to node
u  Height of tree (or subtree):

length of longest path from
root to leaf

u  Like a linked list, a tree can be
defined recursively
q  Subtrees rooted at nodes are

also trees

9/07/16 COP 3530: DATA STRUCTURES

Properties of Trees
u  If n is the number of nodes in a tree, then

q  Number of edges in a tree = n-1

u  Number of leaves in a full binary tree = 1 more than
number of internal nodes

u  Number of empty subtrees = n+1

9/07/16 COP 3530: DATA STRUCTURES

Implementing Binary Trees
Generalizing linked lists
u  Instead of next/prev pointers, each node has 2 pointers

q  Left and right child; if needed, pointer to parent

Can be implemented using Arrays

u  To be discussed later!

9/07/16 COP 3530: DATA STRUCTURES

left data right

42

left data right

59

left data right

27

left data right

86

Tree Traversals
u  Inorder traversal

q  Left subtree – Node – Right subtree
q  6, 4, 2, 7, 5, 8, 1, 3

u  Preorder traversal
q  Node – Left subtree – Right subtree
q  1, 2, 4, 6, 5, 7, 8, 3

u  Postorder traversal
q  Left subtree – Right subtree – Node
q  6, 4, 7, 8, 5, 2, 3, 1

9/07/16 COP 3530: DATA STRUCTURES

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/non_rec_trav.bmp

Implementation
static void preorder(BinaryNode rt) {

 if (rt == null) return; // Empty subtree - do nothing

 visit(rt); // Process root of subtree

 preorder(rt.left()); // Process all nodes in left subtree

 preorder(rt.right()); // Process all nodes in right subtree

}

9/07/16 COP 3530: DATA STRUCTURES

Tree Traversal Applications
u  Expression Parse trees

q  Inorder traversal?
q  Postorder traversal?

u  Printing directory structure
q  Figure 4.7 in Weiss book

9/07/16 COP 3530: DATA STRUCTURES

https://people.eecs.berkeley.edu/~bh/ss-pics/parse0.jpg

Binary Search Trees
u  Binary Tree where each node stores a value

u  Value stored at node is larger than all values stored in
nodes of left subtree

u  Value stored at node is smaller than all values stored in
nodes of right subtree

9/07/16 COP 3530: DATA STRUCTURES

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/pix/insertEx.bmp

