
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Motivation
u  Many applications where

q  Items have associated priorities
•  Job scheduling

§  Long print jobs vs short ones; OS jobs vs user jobs
§  Doctor’s office

u  Abstract Data Structure: PriorityQueue
q  Insert(x, priority) // insert item with priority value
q  DeleteMin // delete item with highest prioriy

u  Simple Implementations:
q  …

9/28/16 COP 3530: DATA STRUCTURES

Possible Implementations
insert(x,	
 p)	
 deleteMin	

LinkedList	
 O(1)	
 O(N)	

SortedList	
 O(N)	
 O(1)	

ArrayList	
 O(1)	
 O(N)	

SortedArrays	
 O(N)	
 O(1)	

Stacks	
 O(1)	
 N/A	

Queues	
 O(1)	
 N/A	

Binary	
 Search	
 Tree	
 O(h)	
 O(h)	

AVL	
 Trees	
 O(log	
 N)	
 O(log	
 N)	

Binary	
 Heaps	
 O(log	
 N)	
 **	
 O(log	
 N)	

9/28/16 COP 3530: DATA STRUCTURES

What is a Binary Heap?
u  Heap is

q  a complete binary tree
q  Priority of node is at least as large as priority of children

u  Useful observations
q  Highest priority is at the root of the tree
q  The number of nodes in a complete binary tree of height

h is between 2h and 2h+1 – 1
q  The height of a complete binary tree with n nodes is

floor(log n)
q  A complete binary tree can be stored in an array.
•  How?

9/28/16 COP 3530: DATA STRUCTURES

Heap Property

Possible Array Implementation
Index 1 2 3 4 5 6 7 8 9 10

Node 18 15 14 6 12 11 3 9 2 7

Left Child 2 3 4 N/A N/A 7 N/A 9 N/A N/A

Right Child 8 6 5 N/A N/A N/A N/A 10 N/A N/A

Parent N/A 1 2 3 3 2 6 1 8 8

9/28/16 COP 3530: DATA STRUCTURES

u  No gaps in array
q  Because binary heaps are complete binary trees

Index 1 2 3 4 5 6 7 8 9 10

Node 18 15 9 14 11 2 7 6 12 3

Left Child 2 4 6 8 10 N/A N/A N/A N/A N/A

Right Child 3 5 7 9 N/A N/A N/A N/A N/A N/A

Parent N/A 1 1 2 2 3 3 4 4 5

Binary Heap: An example
u  Root is always in position 1

u  For any array position i
q  Left child in position 2i
q  Right child in position 2i+1
q  Parent in floor(i/2)

u  All tree links are therefore
implicit

9/28/16 COP 3530: DATA STRUCTURES

http://users.cecs.anu.edu.au/~Alistair.Rendell/Teaching/apac_comp3600/module2/images/Heaps_HeapStructure.png

Array Implementations
u  Why is it better?

q  Speed
•  Array operations tend to be faster (indexing is faster than

referencing)
•  no need to read and write node references
•  cache performance is better

q  Memory
•  Trees have a storage overhead (pointers to chidren)

9/28/16 COP 3530: DATA STRUCTURES

Binary Heap interface
// **********PUBLIC OPERATIONS*************
// void insert(x) --> Insert x
// Comparable deleteMin()--> Return and remove smallest item
// Comparable findMin() --> Return smallest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// **********************************

9/28/16 COP 3530: DATA STRUCTURES

Insert Operation
u  Let’s try the animation first

q  http://www.cs.usfca.edu/~galles/JavascriptVisual/
Heap.html

u  Basic Idea:
q  Insert item at last item on last level
•  Same as last location in array

q  Percolate item up the tree until Heap Property is satisfied

9/28/16 COP 3530: DATA STRUCTURES

Insert Implementation
 public void insert(AnyType x) {
 if(currentSize == array.length - 1)
 enlargeArray(array.length * 2 + 1);

 // Percolate up
 int hole = ++currentSize;
 for(array[0] = x; x.compareTo(array[hole/2]) < 0; hole /= 2)
 array[hole] = array[hole / 2];
 array[hole] = x;
 }

9/28/16 COP 3530: DATA STRUCTURES

Time Complexity = O(log n)

deleteMin Operation
u  Basic Idea: First Attempt

q  Delete root
q  Percolate next highest priority value up the tree

u  Does not work
q  Result may not be a complete tree

u  Let’s try the animation now
q  http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

u  Basic Idea: SecondAttempt
q  Swap root with last item in array
q  Percolate value down the tree

9/28/16 COP 3530: DATA STRUCTURES

deleteMin Implementation
 public AnyType deleteMin()
 {
 if(isEmpty())
 throw new UnderflowException();

 AnyType minItem = findMin(); // returns array[1]
 array[1] = array[currentSize--];
 percolateDown(1);

 return minItem;
 }

9/28/16 COP 3530: DATA STRUCTURES

percolateDown
 private void percolateDown(int hole)
 {
 int child;

 AnyType tmp = array[hole];
 for(; hole * 2 <= currentSize; hole = child)
 {
 child = hole * 2;
 if(child != currentSize &&
 array[child + 1].compareTo(array[child]) < 0)
 child++; // “child” is now the higher priority of the 2 children
 if(array[child].compareTo(tmp) < 0)
 array[hole] = array[child]; // now compare with “child” & swap
 else
 break;
 }
 array[hole] = tmp;
 }

9/28/16 COP 3530: DATA STRUCTURES

Time Complexity = O(log n)

Possible Implementations
insert(x,	
 p)	
 deleteMin	

LinkedList	
 O(1)	
 O(N)	

SortedList	
 O(N)	
 O(1)	

ArrayList	
 O(1)	
 O(N)	

SortedArrays	
 O(N)	
 O(1)	

Stacks	
 O(1)	
 N/A	

Queues	
 O(1)	
 N/A	

Binary	
 Search	
 Tree	
 O(h)	
 O(h)	

AVL	
 Trees	
 O(log	
 N)	
 O(log	
 N)	

Binary	
 Heaps	
 O(log	
 N)	
 **	
 O(log	
 N)	

9/28/16 COP 3530: DATA STRUCTURES

Rethinking Priority Queues
u  We have 2 operations

q  Insert(x)
q  deleteMin()

u  Amazingly, this can be used to sort a list. How?
q  For (each item in unsorted list) { Insert(x); }
q  While (not IsEmpty()) { deleteMin(); }

u  Both steps above take O(n log n) time. Why?

u  We also want to rethink the first step.

u  If all items are inserted at start before any deletes, can
inserts be done faster?

9/28/16 COP 3530: DATA STRUCTURES

Revisit Insert
u  If all items are inserted at start before any deletes, can

inserts be done faster?

u  Yes!
q  buildHeap

 private void buildHeap()
 { // build heap efficiently from unsorted list
 for(int i = currentSize / 2; i > 0; i--)
 percolateDown(i);
 }

9/28/16 COP 3530: DATA STRUCTURES

Analysis of buildHeap
u  Useful Fact:

q  percolateDown(i) has time complexity O(d) where d is
height of node represented by heap location i

u  Theorem: For complete binary tree with height h and
with n = 2h+1 – 1 nodes, the sum of heights of the nodes
is 2h+1 – 1 – (h+1) = O(n)

u  BuildHeap does job of n inserts, but more efficiently

u  Since buildHeap can be performed in O(n) time, each
insert operation effectively takes O(1) time on the
average.

9/28/16 COP 3530: DATA STRUCTURES

Applications of Priority Queues
u  Sorting

q  buildHeap and then perform n deleteMins
•  O(n) + n X O(log n) = O(n log n)

u  Selection – find kth smallest item in set
1.  buildHeap and then perform only k deleteMins
•  O(n) + k X O(log n) = O(n + k log n)
•  If k = O(n / log n), then time complexity is O(n)
•  If k is much larger (say k = n/2), then this takes O(n log n)

2.  buildHeap on first k items and then, if needed, insert each
remaining item after a deleteMin operation
•  O(k) + (n-k) X O(log k) = O(n log k)

9/28/16 COP 3530: DATA STRUCTURES

Minor Problem
u  Heap has largest item at the root

u  Thus items deleted would be in reverse order

u  One option is to create a heap where the smallest item is at
root instead of the largest and to assume that values in the
heap increase as you traverse from root to leaf

u  A better solution is already achieved by deleteMin()
q  How?

u  Remember how deleteMin swaps with last position in array
before proceeding to percolateDown() that item?
q  N calls to deleteMin() would place the items in incr order!

9/28/16 COP 3530: DATA STRUCTURES

Other Heap Operations
u  decreaseKey(p, Delta) // make item higher priority

u  increaseKey(p, Delta) // make item lower priority

u  delete(p) // delete arbitrary item

9/28/16 COP 3530: DATA STRUCTURES

Sorting with AVL Trees
u  N insert() operations, followed by

u  N findMin() and N delete()

u  Time complexity is O(N log N) again

9/28/16 COP 3530: DATA STRUCTURES

