Data Structures

Giri Narasimhan
Office: ECS 254A
Phone: x-3748

~ giri@cs.fiu.edu

Motivation

Many applications where
a Items have associated priorities

® Job scheduling
Long print jobs vs short ones; OS jobs vs user jobs
Doctor's office

Abstract Data Structure: PriorityQueue
O Insert(x, priority) // insert item with priority value
0 DeleteMin // delete item with highest prioriy

Simple Implementations:
Q

COP 3530: DATA STRUCTURES 9/28/16

Possible Implementations
| insert(up) | deleteMin

LinkedList O(1) O(N)
SortedList O(N) O(1)
ArrayList O(1) O(N)
SortedArrays O(N) O(1)
Stacks 0(1) N/A
Queues 0O(1) N/A
Binary Search Tree O(h) O(h)
AVL Trees O(log N) O(log N)
Binary Heaps O(log N) ** O(log N)

COP 3530: DATA STRUCTURES 9/28/16

What is a Binary Heap?

¢ Heapis H
; P
O acomplete binary tree CAp L IODgIly

a

Priority of node is at least as large as priority of children

¢ Useful observations

Q
d

Q

Highest priority is at the root of the tree

The number of nodes in a complete binary tree of height
h is between 2h and 2! - 1

The height of a complete binary tree with n nodes is
floor(log n)

A complete binary tree can be stored in an array.
®* How?

COP 3530: DATA STRUCTURES 9/28/16

Possible Array Implementation
IS N AP A A B AT AT

Node
Left Child 2 3 4 INZGE NDOARE 7 RN 9 N/A N/A
Right Child 8 6 5 N/A N/A N/A N/A 10 N/A N/A
Parent N/A 1 2 3 3 2 6 1 8 8
-----n-nn-
Node 9

Left Child 2 4 6 8 10 N/A N/A N/A N/A N/A
Right Child 3 5 7 9 N/A N/A N/A N/A N/A N/A
Parent N/A 1 1 2 2 3 3 4 4 5

¢ No gaps in array
0 Because binary heaps are complete binary trees

COP 3530: DATA STRUCTURES 9/28/16

Binary Heap: An example

¢ Root is always in position 1

¢ For any array position i
O Left child in position 2i
Q Right child in position 2i+1
Q Parent in floor(i/2)

¢ All tree links are therefore
implicit

l1 2 3 4 5 6 7 8 9 10

18§115) 9 |14|11) 2|7)6 |12} 3

COP 3530: DATA STRUCTURES 9/28/16
http://users.cecs.anu.edu.au/ "~ Alistair.Rendell/Teaching/apac_comp3600/module2/images/Heaps_HeapStructure.png

Array Implementations

¢ Why is it better?
d Speed

® Array operations tend to be faster (indexing is faster than
referencing)

® no need to read and write node references
® cache performance is better
a Memory
® Trees have a storage overhead (pointers to chidren)

COP 3530: DATA STRUCTURES 9/28/16

Binary Heap interface

// **********PUBLIC OPERATIONS*************

// void insert(x) --> Insert x

// Comparable deleteMin()--> Return and remove smallest item
// Comparable findMin() --> Return smallest item

// boolean isEmpty() --> Return true if empty; else false

// void makeEmpty() -->Remove all items
// AEXEXKXEXELXLXXKXKLKAKLXKXKAKRKAKXKXAKAKkKXKXkkkkkkkkkkx

COP 3530: DATA STRUCTURES

9/28/16

Insert Operation

¢ Let's try the animation first

Q http://www.cs.usfca.edu/~galles/JavascriptVisual/
Heap.html

& Basic Idea:

O Insertitem at last item on last level
® Same as last location in array

O Percolate item up the tree until Heap Property is satisfied

COP 3530: DATA STRUCTURES 9/28/16

Insert Implementation

public void insert(AnyType x) {
if(currentSize == array.length - 1)
enlargeArray(array.length * 2 + 1);

// Percolate up

int hole = ++currentSize;

for(array[0] = x; x.compareTo(array[hole/2]) < O; hole /= 2)
array[hole] = array[hole / 2];

array[hole] = x;

}

Time Complexity = O(log n)

COP 3530: DATA STRUCTURES 9/28/16

\ 4

4

4

\ 4

deleteMin Operation

Basic Idea: First Attempt
Q Delete root

O Percolate next highest priority value up the tree

Does not work
0 Result may not be a complete tree

Let's try the animation now

O http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

Basic Idea: SecondAttempt
O Swap root with last item in array
O Percolate value down the tree

COP 3530: DATA STRUCTURES

9/28/16

deleteMin Implementation

public AnyType deleteMin()

{
if(isEmpty())
throw new UnderflowException();

AnyType minItem = findMin(); // returns array[1]
array[1] = array[currentSize--];

percolateDown(1);

return minItem;

COP 3530: DATA STRUCTURES 9/28/16

percolateDown

private void percolateDown(int hole)
int child:;

AnyType tmp = array|[hole];
for(; hole * 2 <= currentSize; hole = child)

child = hole * 2;
if(child = currentSize &&
array[child + 1].compareTo(array[child])<0)

child++; // “child" is now the higher priority of the 2 children
if(array[child J.compareTo(tmp)< 0)

array[hole] = array[child]. // now compare with “child" & swap
else

break;

array[hole] = tmp;
Time Complexity = O(log n)

COP 3530: DATA STRUCTURES 9/28/16

Possible Implementations
| insert(up) | deleteMin

LinkedList O(1) O(N)
SortedList O(N) O(1)
ArrayList O(1) O(N)
SortedArrays O(N) O(1)
Stacks 0(1) N/A
Queues 0O(1) N/A
Binary Search Tree O(h) O(h)
AVL Trees O(log N) O(log N)
Binary Heaps O(log N) ** O(log N)

COP 3530: DATA STRUCTURES 9/28/16

2

Rethinking Priority Queues

We have 2 operations
Q Insert(x)
Q deleteMin()

Amazingly, this can be used to sort a list. How?
Q For (each item in unsorted list) { Insert(x); }
O While (not IsEmpty()) { deleteMin(); }

Both steps above take O(n log n) time. Why?
We also want to rethink the first step.

If all items are inserted at start before any deletes,

inserts be done faster?

COP 3530: DATA STRUCTURES

can

9/28/16

Revisit Insert

¢ If all items are inserted at start before any deletes, can
inserts be done faster?

¢ Yesl!
Q buildHeap

private void buildHeap()
{ // build heap efficiently from unsorted list
for(inti = currentSize/ 2;i>0; i--)
percolateDown(i);

COP 3530: DATA STRUCTURES 9/28/16

Analysis of buildHeap

Useful Fact:

Q percolateDown(i) has time complexity O(d) where d is
height of node represented by heap location i

Theorem: For complete binary tree with height h and
with n = 2"! - 1 nodes, the sum of heights of the nodes
is 2h*1 -1 - (h+1) = O(n)

BuildHeap does job of n inserts, but more efficiently

Since buildHeap can be performed in O(n) time, each
insert operation effectively takes O(1) time on the
average.

COP 3530: DATA STRUCTURES 9/28/16

Applications of Priority Queues

¢ Sorting
O buildHeap and then perform n deleteMins

® O(n) +n X O(log n) = O(n log n)

¢ Selection - find kth smallest item in set

19

buildHeap and then perform only k deleteMins

® O(n) + k X O(log n) = O(n + k log n)

® If k=0O(n/ log n), then time complexity is O(n)

® If kis much larger (say k = n/2), then this takes O(n log n)

buildHeap on first k items and then, if needed, insert each
remaining item after a deleteMin operation

® O(k) + (n-k) X O(log k) = O(n log k)

COP 3530: DATA STRUCTURES 9/28/16

Minor Problem

Heap has largest item at the root
Thus items deleted would be in reverse order

One option is to create a heap where the smallest item is at
root instead of the largest and to assume that values in the
heap increase as you traverse from root to leaf

A better solution is already achieved by deleteMin()
a How?

Remember how deleteMin swaps with last position in array
before proceeding to percolateDown() that item?

O N calls to deleteMin() would place the items in incr order!

COP 3530: DATA STRUCTURES 9/28/16

Other Heap Operations

¢ decreaseKey(p, Delta) // make item higher priority
¢ increaseKey(p, Delta) // make item lower priority

¢ delete(p) // delete arbitrary item

COP 3530: DATA STRUCTURES 9/28/16

Sorting with AVL Trees

¢ N insert() operations, followed by
¢ N findMin() and N delete()
¢ Time complexity is O(N log N) again

COP 3530: DATA STRUCTURES 9/28/16

