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Graphs

® Graphs model networks of various
kinds: roads, highways, oil pipelines,

airline r'ou‘res dependency
relationships, etc. 5

¢ Graph G(V,E)
¢ \/ Vertices or Nodes

MMMMM

¢ E Edges or links connect vertices

¢ Directed vs. Undirected edges
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Graph Representations

¢ Adjacency Matrix
¢ Adjacency List
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Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five
vertices and seven edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix rep-
resentation of G.
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Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices
and eight edges. (b) An adjacency-list representation of G. (¢) The adjacency-matrix representation
of G.
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Vertex and Edge classes

Class Edge {
public Vertex dest;
public double weight;

public Edge (Vertex d,
double w) {
dest = d;
weight = w;

Class Vertex {

public String Name;

public AnyType extraInfo;

public List adj;

public int dist; // double?

public Vertex prev;

public Vertex (String s) {
Name = s;
adj = new LinkedList();
reset();

}

public reset () {
dist=INFNT; path=null;

}
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Graphs

¢ Graphs can be augmented to
store extra info (e.g., city
population, oil flow capacity, etc.)

¢ Weighted vs. Unweighted
¢ Paths and Cycles



Figure 14.1
A directed graph.
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Figure 14.2

Adjacency list representation of the graph shown in Figure 14.1; the nodes in
list / represent vertices adjacent to / and the cost of the connecting edge.
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Adjacency Lists

¢ Constructing adjacency lists
O Input: list of edges
O Output: adjacency list for all vertices
O Time: O(L), where L is length of list of edges.

¢ Check if edge exists
Q Input: edge (u,v)
O Output: does the edge exist in the graph G?

Q Time: O(du?_, where d, is the number of enfriesinu’ s
adjacency list. In the worst case it is O(N), where N is
the number of vertices

¢ Need a MAP data structure to map vertex name or
ID to (internal) vertex number.
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Figure 14.33
An activity-node graph

Start @ Finish
S
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Topological Sort Example
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Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).
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Figure 14.30B
A topological sort. The conventions are the same as those In
Figure 14.21.
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Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).
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Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.
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Topological Sort

void topSort () {
for(int j=0; j<N; j++){

Vertex v = findVertexOfIndegZero();

if (v==null)
return; // Cycle found

v.topologicalNum = j;

for each vertex w adjacent to v
w.inDegree--; // use extraInfo field

}

Time CompleXitY = O(Il + m) COP 3530: DATA STRUCTURES 10/12/16



Shortest Paths

¢ Suppose we are interested in the shortest
paths (and their lengths) from vertex
“Miami” to all other vertices in the
graph.

¢ We need to augment the data structure to
store this information.
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Figure 14.4

An abstract scenario of the data structures used in a shortest-path
calculation, with an input graph taken from a file. The shortest weighted path
fromAtoCisAtoBto EtoDto C (costis 76).

dist prev  name  adj

D C 10 0 D — 3 (23),1 (10)
A B 12
0 8 23 1 C — > 2(19)
A D 87 2 A —1 0 (87),3 (12)
E D 43
: E 11 3 B — 4 (11)
C A 19 4 E — - 0 (43)
Input Graph table
4 R
D (0) E (4)
B (3)
A (2) C(1)
\ J

Visual representation of graph Dictionary 4
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Figure 14.21A
Searching the graph in the unweighted shortest-path computation. The

darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered (continued).
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Figure 14.21B
Searching the graph in the unweighted shortest-path computation. The

darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered.
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Figure 14.16
The graph, after the starting vertex has been marked as reachable in zero

edges

Ve
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Figure 14.17
The graph, after all the vertices whose path length from the starting vertex is
1 have been found
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Figure 14.18
The graph, after all the vertices whose shortest path from the starting vertex
is 2 have been found
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Figure 14.19
The final shortest paths
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Figure 14.20
If wis adjacent to v and there is a path to v, there also is a path to w

D, D, +1
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Unweighted SP algorithm

Void BFS (Vertex s) { // same as unweighted SP
Queue <Vertex> Q = new Queue <>;
for each Vertex v except s { v.dist = INFNT;}
s.dist = 0; s.prev = null;
Q.enqueue(s);
while ( 1Q.isEmpty() ) {
v = Q.dequeue();
for each vertex w adjacent fo v
if (w.dist == INFNT) {
w.dist = v.dist + 1;
w.prev = v;
Q.enqueue(w);

}

Time CompleXitY = O(Il + m) COP 3530: DATA STRUCTURES 10/12/16



Figure 14.23
The eyeball is at v and w is adjacent, so D, should be lowered to 6.
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Figure 14.24
If D, is minimal among all unseen vertices and if all edge costs are
nonnegative, D, represents the shortest path.
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Figure 14.25A
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21 (continued).
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Figure 14.25B
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21.
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Dijkstra’'s SP algorithm

void Dijkstra (Vertex s) { // same as weighted SP
PriorityQueue <Vertex> Q = new PriorityQueue <>;
for each Vertex v except s { v.dist = INFNT; Q.insert(v):; }
s.dist = O0; s.prev= null;
Q.insert(s);
while (1Q.isEmpty() ) {
v = Q.deleteMin();
for each vertex w adjacent to v
if (w.dist > v.dist + weight of edge (v,w)) {
w.dist = v.dist + weight of edge (v,w);
w.prev=v;
} Q.updatePriority(w, v.dist + weight of edge (v,w));
}
}

Time Complexity = O(n log n + m + m log n) = O(m log n)



Figure 14.28
A graph with a negative-cost cycle
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Figure 14.38

Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS

Unweighted O(|E]) Breadth-first search
Weighted, no negative edges O(|Elog|V]) Dijkstra's algorithm
Weighted, negative edges O(E| - VD) Bellman—Ford algorithm
Weighted, acyclic O(|E]) Uses topological sort
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