
Data Structures
Giri Narasimhan

Office: ECS 254A
Phone: x-3748
giri@cs.fiu.edu

Suffix Arrays and Suffix Trees

10/12/16 COP 3530: DATA STRUCTURES

String Data Structures
u  If we have many strings (instead of int or double) to

store, how can we facilitate search?
q  Store in a tree and use “compareTo” or “equals” methods
•  Time complexity is O(log N) where N is size of database

q  Better option: Hashing
•  Hashing takes O(s) time, where s is length of query string
•  Search can be done in O(s) time on the average

u  If N is very large (dictionary)?
q  Hashing is much better than trees
q  But, no worst-case guarantees

10/12/16 COP 3530: DATA STRUCTURES

Tries
u  Search can be done in O(s)

time in the worst case
q  Assume that alphabet size

is small
q  Otherwise, branching

becomes expensive

u  Space = O(Stotal)

u  All terminal nodes are
marked

u  Not all terminal nodes are
leaves

10/12/16 COP 3530: DATA STRUCTURES

http://www.slideshare.net/zukun/advances-in-discrete-energy-minimisation-for-computer-vision

Other String searches
u  What if we also want substring searches also?

q  Use a tree
•  Go left or right for next comparison?
•  It does not help (e.g., we have only 1 long string)

q  Use “contains”
•  Need to look at every string in database – expensive!
•  Concatenate all strings in database before search

§  What if we search many, many times

u  What if we have a few long strings to store and many,
many substring searches to make?
q  Suffix Arrays and Suffix Trees

10/12/16 COP 3530: DATA STRUCTURES

Storing suffixes of “cacao$”

10/12/16 COP 3530: DATA STRUCTURES

$

acao$

ao$

cacao$

cao$

o$

Sorted
Suffixes Suffixes

Substrings of “mississippi”
Obtain all suffixes of “mississippi”
u  mississippi
u  ississippi
u  ssissippi
u  sissippi
u  issippi
u  ssippi
u  sippi
u  ippi
u  ppi
u  pi
u  i
u  ε

10/12/16 COP 3530: DATA STRUCTURES

mississippi

Suffix Arrays vs Suffix Trees

10/12/16 COP 3530: DATA STRUCTURES
http://image.slidesharecdn.com/advancesindiscreteenergyminimisationforcomputervision-121028223132-phpapp02/95/advances-in-discrete-
energy-minimisation-for-computer-vision-30-638.jpg?cb=1351463578

More Details at:
u  http://web.stanford.edu/class/cs97si/suffix-array.pdf

10/12/16 COP 3530: DATA STRUCTURES

FIU Team
u  FIU Football/Soccer/Basketball Team

u  FIU Programming Team
q  Represent FIU at competitions
q  SCM Southeast Regional Programming Competition
•  Part of ACM ICPC

q  This year we have 12 team members & many trainees
q  Main focus of problems in competition
•  Data Structures & Efficient Algorithms

q  Train every Thursday from 3:30 – 4:45 PM
q  Also train on other days (varies with semester)

u  Do you want to be an elite Team Member?

10/12/16 COP 3530: DATA STRUCTURES http://academy.cis.fiu.edu/team/

kD-Trees

10/12/16 COP 3530: DATA STRUCTURES

Storing/Retrieving Points
u  How do we solve geographical problems?

q  I am at 25.7617° N 80.1918° W
q  What is my nearest …
•  Post office, Burger King, Gas Station

q  Within a 5 mile radius, find all …
•  Post offices, Chinese restaurants, Uber Taxis

q  Where should I locate the next
•  Fire station, public school, …

u  If all points are on a line, use SortedArray or AVL tree

10/12/16 COP 3530: DATA STRUCTURES

Insert points into kD-tree

10,12

35,45

kd-tree example

x

y

x

y

5,25

50,30

70,70

30,40

(30,40)

(5,25)

(70,70)

(10,12)

(50,30)

(35,45)

insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)

10/12/16 COP 3530: DATA STRUCTURES
Can be easily generalized to higher dimensions

Insert Operation
insert(Point x, KDNode t, int cd) {
 if t == null // empty tree

 t = new KDNode(x);
 else if (x == t.data)

 // error! duplicate
 else if (x[cd] < t.data[cd])

 t.left = insert(x, t.left, (cd+1) % DIM);
 else

 t.right = insert(x, t.right, (cd+1) % DIM);
 return t;
}

10/12/16 COP 3530: DATA STRUCTURES

Nearest Neighbor Nearest Neighbor, Code

def NN(Point Q, kdTree T, int cd, Rect BB):

 // if this bounding box is too far, do nothing

 if T == NULL or distance(Q, BB) > best_dist: return

 // if this point is better than the best:

 dist = distance(Q, T.data)

 if dist < best_dist:

 best = T.data

 best_dist = dist

 // visit subtrees is most promising order:

 if Q[cd] < T.data[cd]:

 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))

 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))

 else:

 NN(Q, T.right, next_cd, BB.trimRight(cd, t.data))

 NN(Q, T.left, next_cd, BB.trimLeft(cd, t.data))

Following Dave Mount’s Notes (page 77)

best, best_dist are global var

(can also pass into function calls)

10/12/16 COP 3530: DATA STRUCTURES
Search time: O(log n)

Red-Black Trees

10/12/16 COP 3530: DATA STRUCTURES

Red-Black Trees
1.  It is a binary search tree

2.  Every node is colored red/black

3.  Root is always black

4.  Parent of red node is always black

5.  Every path from root to a leaf has same number of black
nodes and is called the Black Height of the tree

u  Consequences of rule 5:
q  Height of tree < 2 log (N+1)
q  Search is O(log N)

10/12/16 COP 3530: DATA STRUCTURES

11/25/2016 Chapter 12 Advanced Data Structures and Implementation

https://jigsaw.vitalsource.com/books/9780133465013/epub/OPS/xhtml/fileP7000478408000000000000000005DB6.xhtml#P7000478408000000000000000005DCA 19/107

12.2.1 Bottom-Up Insertion

As we have already mentioned, if the parent of the newly inserted item is black, we are
done. Thus insertion of 25 into the tree in Figure 12.9 is trivial.

Figure 12.9 Example of a red-black tree (insertion sequence is: 10, 85, 15, 70, 20,

60, 30, 50, 65, 80, 90, 40, 5, 55)

There are several cases (each with a mirror image symmetry) to consider if the parent is
red. First, suppose that the sibling of the parent is black (we adopt the convention that
null nodes are black). This would apply for an insertion of 3 or 8, but not for the
insertion of 99. Let X be the newly added leaf, P be its parent, S be the sibling of the
parent (if it exists), and G be the grandparent. Only X and P are red in this case; G is
black, because otherwise there would be two consecutive red nodes prior to the
insertion, in violation of red-black rules. Adopting the splay tree terminology, X, P, and
G can form either a zig-zig chain or a zig-zag chain (in either of two directions). Figure

12.10 shows how we can rotate the tree for the case where P is a left child (note
there is a symmetric case). Even though X is a leaf, we have drawn a more general
case that allows X to be in the middle of the tree. We will use this more general rotation
later.

The first case corresponds to a single rotation between P and G, and the second case
corresponds to a double rotation, first between X and P and then between X and G.
When we write the code, we have to keep track of the parent, the grandparent, and, for
reattachment purposes, the great-grandparent.

In both cases, the subtreeâ€™s new root is colored black, and so even if the original
great-grandparent was red, we removed the possibility of two consecutive red nodes.
Equally important, the number of black nodes on the paths into A, B, and C has
remained unchanged as a result of the rotations.

So far so good. But what happens if S is red, as is the case when we attempt to insert
79 in the tree in Figure 12.9 ? In that case, initially there is one black node on the
path from the subtreeâ€™s root to C. After the rotation, there must still be only one

Less strict than AVL trees.
Thus, fewer rotations, but

greater height

Insert Operation
u  First apply BST insert and color new node as red (unless

it is the root)
q  Rules 1, 2, 3 and 5 are fine.
q  Rule 4 may be violated and needs to be fixed

u  Let’s try the animation
q  https://www.cs.usfca.edu/~galles/visualization/

RedBlack.html

10/12/16 COP 3530: DATA STRUCTURES

10/12/16 COP 3530: DATA STRUCTURES

http://www.csse.canterbury.ac.nz/research/RG/alg/rbtree.gif

Insert: 2 cases

11/25/2016 Chapter 12 Advanced Data Structures and Implementation

https://jigsaw.vitalsource.com/books/9780133465013/epub/OPS/xhtml/fileP7000478408000000000000000005DB6.xhtml#P7000478408000000000000000005DCA 20/107

black node. But in both cases, there are three nodes (the new root, G, and S) on the
path to C. Since only one may be black, and since we cannot have consecutive red
nodes, it follows that weâ€™d have to color both S and the subtreeâ€™s new root red,
and G (and our fourth node) black. Thatâ€™s great, but what happens if the great-
grandparent is also red? In that case, we

Figure 12.10 Zig rotation and zig-zag rotation work if S is black

could percolate this procedure up toward the root as is done for B-trees and binary
heaps, until we no longer have two consecutive red nodes, or we reach the root (which
will be recolored black).

10/12/16 COP 3530: DATA STRUCTURES

RBNode
private static class RBNode<AnyType> {
 AnyType element;
 RBNode<AnyType> left;
 RBNode<AnyType> right;
 int color;

 // constructors

 …
}

u  2 special nodes
q  nullNode
•  All null pointers point to

this node
q  Root sentinel
•  Extra node whose right

child is the real root

10/12/16 COP 3530: DATA STRUCTURES

