
1

Wrappers and Adapters
• A wrapper class stores an entity and adds operations that

the original type did not support correctly. Java has wrapper
types for the 8 primitive types (e.g., Integer for int)

• An adapter class is used when the interface of an existing
class needs to be changed to a more appropriate one (e.g.,
InputStreamReader and OutputStreamWriter that convert
byte-oriented streams to character-oriented streams).

2

public class SimpleArrayList // Fig 4.23, Pg 121, Example of a Wrapper
{

public SimpleArrayList()
{ clear(); }

public int size()
{ return theSize; }

public Object get(int idx)
{ if(idx < 0 || idx >= size())

throw new ArrayIndexOutOfBoundsException("Index " + idx + "; size " + size());
return theItems[idx];

}

public boolean add(Object x)
{ if(theItems.length == size())

{
Object [] old = theItems;
theItems = new Object[theItems.length * 2 + 1];
for(int i = 0; i < size(); i++)

theItems[i] = old[i];
}
theItems[theSize++] = x;
return true;

}
private int theSize;
private Object [] theItems;

}

3

Packages
• Group of related classes.
• Specified by package statement.
• Fewer restrictions on access among each other;

– if class is called public, then it is visible to all classes
– if no visibility modifier is specified, its visibility is termed as

“package visibility” and is somewhere between:
• private (other classes in package cannot access it) and
• public (other classes outside package can also access it)

• Package locations can be specified by the CLASSPATH
environmental variables.

• The import statement helps to get multiple packages. It
saves typing.

4

Exceptions
• An exception is an object that is thrown from the site of an

error and can be caught by an appropriate exception handler.
• Separating the handler from error detection makes the code

easier to read and write. finally clause helps cleanup.
• User-defined exceptions can be created or thrown. They are

normally not caught in the same block, but passed up to a
calling block. For e.g.,

throw new NullPointerException();
• The try region is a guarded region from which errors can be

caught by exceptions. Code that good generate an exception
is enclosed in a try region. Method is exited if exceptions
are thrown from outside try regions. Thus, there is more
reliable error recovery without simply exiting.

• It is also possible to rethrow exceptions.

5

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class DivideByTwo
{

public static void main(String [] args)
{

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

int x;
String oneLine;

System.out.println("Enter an integer: ");
try
{

oneLine = in.readLine();
x = Integer.parseInt(oneLine);
System.out.println("Half of x is " + (x / 2));

}
catch(IOException e)
{ System.out.println(e); }

catch(NumberFormatException e)
{ System.out.println(e); }

}
}

6

RuntimeExceptions
• Automatically thrown (no need to explicitly throw them).
• No need to specify explicitly that a method might throw one

of these exceptions.
• No need to catch them, dealt with automatically.
• It is possible to explicitly throw a runtime exception.

7

Javadoc
• In C++ specifications are put in .h files and implementations

in .cpp files. In Java, only interfaces are put in separate
files.

• Appropriate documentation is added to the implementation,
and then we run javadoc program to automatically generate a
set of HTML files as documentation for the code.

• Javadoc comments start are delimited by /** and **/. Other
useful comments are prefaced by @param, @author,
@return, @throws.

8

9

Algorithm Running Times

O(22N)Super-exponential22N

O(2N)Exponential2N

O(Nk)PolynomialNk

O(N2), O(N3)Quadratic, CubicN2 , N2

O(N)LinearN

O(log2N), O(logkN)Log-squared, Poly-logarithmiclog2N, logkN

O(log N)Logarithmiclog N

O(1)Constantc

Big-OhNameFunction

10

public final class MaxSumTest
{

public static int maxSubSum2(int [] a)
{

int maxSum = 0;

for(int i = 0; i < a.length; i++)
{

int thisSum = 0;
for(int j = i; j < a.length; j++)
{

thisSum += a[j];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
}

}

return maxSum;
}

}

public final class MaxSumTest
{

static private int seqStart = 0;
static private int seqEnd = -1;
public static int maxSubSum1(int [] a)
{

int maxSum = 0;

for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++)
{

int thisSum = 0;

for(int k = i; k <= j; k++)
thisSum += a[k];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
}

return maxSum;
}

}

11

public final class MaxSumTest
{

public static int maxSubSum3(int [] a)
{

int maxSum = 0;
int thisSum = 0;

for(int i = 0, j = 0; j < a.length; j++)
{

thisSum += a[j];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
else if(thisSum < 0)
{

i = j + 1;
thisSum = 0;

}
}

return maxSum;
}

}

12

public class BinarySearch
{

public static final int NOT_FOUND = -1;

public static int binarySearch
(Comparable [] a, Comparable x)

{
int low = 0;
int high = a.length - 1;
int mid;
while(low <= high)
{

mid = (low + high) / 2;
if(a[mid].compareTo(x) < 0)

low = mid + 1;
else if(a[mid].compareTo(x) > 0)

high = mid - 1;
else

return mid;
}
return NOT_FOUND; // NOT_FOUND = -1

}

// Test program
public static void main(String [] args)
{

int SIZE = 8;
Comparable [] a = new Integer [SIZE];
for(int i = 0; i < SIZE; i++)

a[i] = new Integer(i * 2);

for(int i = 0; i < SIZE * 2; i++)
System.out.println("Found " + i + " at " +

binarySearch(a, new Integer(i)));

}
}

	Wrappers and Adapters
	Packages
	Exceptions
	RuntimeExceptions
	Javadoc
	Algorithm Running Times

