Wrappers and Adapters

A wrapper class stores an entity and adds operations that
the original type did not support correctly. Java has wrapper
types for the 8 primitive types (e.g., Integer for int)

An adapter class is used when the interface of an existing
class needs to be changed to a more appropriate one (e.q.,
InputStreamReader and OutputStreamWriter that convert
byte-oriented streams to character-oriented streams).

public class SimpleArrayList // Fig 4.23, Pg 121, Example of a Wrapper
{

public SimpleArrayList()

{ clear(); }

public int size()
{ return theSize; }

public Object get(int idx)
{ 1f(1dx <0 || idx >=size())
throw new ArraylndexOutOfBoundsException("Index " +idx + "; size " + size());
return theltems|[1dx |;

b

public boolean add(Object x)
{ 1if(theltems.length == size())
{
Object [] old = theltems;
theltems = new Object[theltems.length * 2 + 1 |;
for(int1=0;1<size(); 1++)
theltems[1] =old[1];
)
theltems| theSize++ | = x;
return true;
§
private int theSize;
private Object [| theltems;

1

Packages

Group of related classes.
Specified by package statement.

Fewer restrictions on access among each other;
- if class is called public, then it is visible to all classes
- if no visibility modifier is specified, its visibility is fermed as
“package visibility" and is somewhere between:
- private (other classes in package cannot access it) and
- public (other classes outside package can also access it)

Package locations can be specified by the CLASSPATH
environmental variables.

The import statement helps to get multiple packages. It
saves typing.

Exceptions

An exception is an object that is thrown from the site of an
error and can be caught by an appropriate exception handler.

Separating the handler from error detection makes the code
easier to read and write. finally clause helps cleanup.

User-defined exceptions can be created or thrown. They are
normally not caught in the same block, but passed up to a
calling block. For e.qg.,

throw new NullPointerException();

The fry region is a guarded region from which errors can be
caught by exceptions. Code that good generate an exception
is enclosed in a fry region. Method is exited if exceptions
are thrown from outside try regions. Thus, there is more
reliable error recovery without simply exiting.

It is also possible to rethrow exceptions.

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.i0.IOException;

public class DivideByTwo
{

public static void main(String [] args)
{
BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));
int x;
String oneLine;

System.out.println("Enter an integer: ");
try
{
oneLine = in.readLine();
x = Integer.parselnt(oneLine);
System.out.println("Half of x is "+ (x/2));
b
catch(IOException ¢)
{ System.out.println(¢); }
catch(NumberFormatException e)
{ System.out.println(e); }

RuntimeExceptions

Automatically thrown (no need to explicitly throw them).

No need to specify explicitly that a method might throw one
of these exceptions.

No need to catch them, dealt with automatically.
It is possible to explicitly throw a runtime exception.

Javadoc

In C++ specifications are put in .h files and implementations
in .cpp files. In Java, only interfaces are put in separate
files.

Appropriate documentation is added to the implementation,
and then we run javadoc program to automatically generate a
set of HTML files as documentation for the code.

Javadoc comments start are delimited by /** and **/. Other
useful comments are prefaced by @param, @author,
@return, @throws.

Algorithm Running Times

Function Name Big-Oh
c Constant o(1)
log N Logarithmic O(log N)
log?N, logkN | Log-squared, Poly-logarithmic | O(log?N), O(logkN)
N Linear O(N)
N2 , N2 Quadratic, Cubic O(N?2), O(N3)
Nk Polynomial O(NK)
2N Exponential O(2N)

22N Super-exponential O(2%"%)

public final class MaxSumTest

{

static private int seqStart = 0;
static private int seqEnd = -1;
public static int maxSubSuml(int[]a)

{

int maxSum = 0;

for(inti=0; i < a.length; i++)
for(int j =1; j < a.length; j++)

{

int thisSum = 0;

for(intk=1; k <=j; k++)
thisSum +=a[k |;

if(thisSum > maxSum)

{
maxSum = thisSum;
seqStart = 1;
seqEnd =j;

h

}

return maxSum;

b

public final class MaxSumTest

{

public static int maxSubSum2(int[]a)

{

int maxSum = 0;

for(int i = 0; 1 < a.length; i++)

1
int thisSum = 0;
for(int j = 1; j <a.length; j++)
{

thisSum +=a[j |;

1f(thisSum > maxSum)

{
maxSum = thisSum;
seqStart = 1;
seqEnd =j;

b

b
b

return maxSum;

j
j

10

public final class MaxSumTest

{

public static int maxSubSum3(int[]a)
{

int maxSum = 0;

int thisSum = 0;

for(inti=0,j=0;j <a.length; j++)
{

thisSum +=a[j |;

if(thisSum > maxSum)
{
maxSum = thisSum;
seqStart = 1;
seqEnd =j;
)
else if(thisSum < 0)
{
1=)+1;
thisSum = 0;
}
)

return maxSum;

j
b

11

public class BinarySearch

{

public static final int NOT FOUND = -1;

public static int binarySearch

{

(Comparable [] a, Comparable x)

int low = 0;
int high = a.length - 1;
int mid;
while(low <= high)
{
mid = (low + high) / 2;
if(a[mid].compareTo(x) <0)
low =mid + 1;
else if(a[mid].compareTo(x)>0)
high =mid - 1;
else
return mid;

b

return NOT_FOUND; //NOT FOUND = -1

// Test program
public static void main(String [] args)
{
int SIZE = §;
Comparable [| a =new Integer [SIZE];
for(int1=0; 1 <SIZE; 1++)
a[1] =new Integer(1* 2);

for(inti=0; i< SIZE * 2; i++)

System.out.println("Found " +1+" at " +
binarySearch(a, new Integer(1)));

12

	Wrappers and Adapters
	Packages
	Exceptions
	RuntimeExceptions
	Javadoc
	Algorithm Running Times

