
Lecture 4 1

Packages
• Group of related classes.
• Specified by package statement.
• Fewer restrictions on access among each other;

– if class is called public, then it is visible to all classes
– if no visibility modifier is specified, it is equivalent to the friend

specification from C++, and its visibility is termed as “package visibility”
and is somewhere between:

• private (other classes in package cannot access it) and
• public (other classes outside package can also access it)

– A class cannot be private or protected. Only methods & fields are
allowed to be declared as such.

• Package locations can be specified by the CLASSPATH
environmental variables.

• The import statement helps to get multiple packages. It saves
typing.

Lecture 4 2

Access Restrictions of Methods/Fields
• Clients have access to only public methods.
• Derived classes have access to public & protected members

of the base class.
• Classes within the same package have access to protected

and package members of the base class.

• Public – can be used by anyone .
• Package – by methods of the class and in same package.
• Protected – by methods of the class and subclasses and in

the same package.
• Private – only by members of the same class.

Lecture 4 3

public final class MaxSumTest
{

public static int maxSubSum2(int [] a)
{

int maxSum = 0;

for(int i = 0; i < a.length; i++)
{

int thisSum = 0;
for(int j = i; j < a.length; j++)
{

thisSum += a[j];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
}

}

return maxSum;
}

}

public final class MaxSumTest
{

static private int seqStart = 0;
static private int seqEnd = -1;
public static int maxSubSum1(int [] a)
{

int maxSum = 0;

for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++)
{

int thisSum = 0;

for(int k = i; k <= j; k++)
thisSum += a[k];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
}

return maxSum;
}

}

Lecture 4 4

public final class MaxSumTest
{

public static int maxSubSum3(int [] a)
{

int maxSum = 0;
int thisSum = 0;

for(int i = 0, j = 0; j < a.length; j++)
{

thisSum += a[j];

if(thisSum > maxSum)
{

maxSum = thisSum;
seqStart = i;
seqEnd = j;

}
else if(thisSum < 0)
{

i = j + 1;
thisSum = 0;

}
}

return maxSum;
}

}

Lecture 4 5

Containers
• Powerful tool for programming data structures
• Provides a library of container classes to “hold your objects”
• 2 types of Containers:

– Collection: to hold a group of elements e.g., List, Set
– Map: a group of key-value object pairs. It helps to return “Set

of keys, collection of values, set of pairs. Also works with
multiple dimensions (i.e., map of maps).

• Iterators give you a better handle on containers and helps
to iterate through all the elements. It can be used without
any knowledge of how the collection is implemented.

• Collections API provides a few general purpose algorithms
that operate on all containers.

Lecture 4 6

// Fig 6.9, 6.10, pg 192, 194.
package weiss.util;

public interface Collection extends java.io.Serializable
{

int size();
boolean isEmpty();
boolean contains(Object x);
boolean add(Object x);
boolean remove(Object x);
void clear();
Iterator iterator();
Object [] toArray();

}

public interface Iterator
{

boolean hasNext();
Object next();
void remove();

}

// Fig 6.11, pg 195
public static void printCollection

(Collection c)
{

Iterator itr = c.iterator();
while (itr.hasNext())

System.out.println(itr.next());
}

	Packages
	Access Restrictions of Methods/Fields
	Containers

