
SPRING 2002: COP 3530 Data Structures

[Programming Assignment 1; Due January 24 in class.]

Problem Description

You have been given a regular deck of 52 cards. At the start, the deck of cards is in perfect
increasing order, i.e., the deck when placed face down has the four Aces at the top followed by
the four twos, four threes, . . ., four tens, four jacks, four queens, and four kings. Within the set of
four Aces, the cards are ordered starting from the Club Ace at the top followed by the Diamond
Ace, Heart Ace, and the Club Ace. The same ordering of the suites occurs in the twos, threes
and so on. Your first job is to implement classes called aCard and deckOfCards. The class aCard
should have an overriding implementation of the equals and toString methods. It should also
implement the compareTo method of the interface Comparable. The implementation of the data
field(s) for aCard is up to you to decide. The class deckOfCards should contain a list (array) of
aCard and should be initialized to contain the deck in perfect increasing order. Also, define an
interface called Deck and have the class deckOfCards implement Deck.

We define a perfect shuffle to be the following operation. The deck of cards is placed face
down on a table. It is then separated into two equal half piles, and then the two half piles are
“perfectly interleaved” (just like the way the professional card dealers shuffle at a casino). In other
words any two cards that are next to each other in one of the half piles, will be separated by exactly
one card from the other pile after the perfect shuffle. Care is taken so that the card that was on
top of the deck before the shuffle remains on top after the shuffle (similarly, the card that was at
the bottom of the deck before the shuffle remains at the bottom after the shuffle). Note that the
method, as defined above, has no randomness in the result. Your next task is to define a method
called perfectShuffle in the interface Deck and implement it in deckOfCards.

There is one special card in the deck – the Jack of Spades. You need to define a method called
findSpecial in Deck and implement it in the class deckOfCards; this method will report the
location of the special card (i.e., its position from the top of the deck, where the top card is said
to have location 0 and the bottom card 51).

Now assume that a dealer deals 4 hands for a card game, i.e., the dealer deals one card per
player iteratively until all the cards in the deck are distributed. So the first player (player number
0) would get cards at locations 0, 4, 8, 12, . . . , 48, while the second player (player number 1) gets
cards at locations 1, 5, 9, 13, . . . , 49, and so on. You need to implement a method called findMax
in the class deckOfCards that will report the “highest card” in player i’s hand (assuming that
the shuffler were to deal the current deck of cards). In order to determine the highest card, the
cards in the deck in increasing order are as follows: Club Ace, Diamond Ace, Heart Ace, Spade
Ace, Two Clubs, Two Diamonds, Two Hearts, Two Spades, Three Clubs, and so on, upto King
Spades. The method findMax has four parameters. The first is an object of type deckOfCards and
the last is a functor that implements how to compare cards in the deck. The second parameter is
the player number. The third is the number of players being dealt cards (in this case, this is 4).

Finally you need to write a main program that creates a new deck of cards, shuffles the deck
7 times, and after each shuffle reports both the location of the special card, as well as the highest
card in the hand of player number 2 (assuming that the cards are dealt after that shuffle). Do
not print out the contents of the decks after each shuffle, although you may want to add a private
method to do so for debugging purposes. Make sure to have a good comments section and run
your code through Javadoc. Use runtime exceptions to check parameters of findMax. Print out
the source code and output; also submit the source code on a labeled floppy disk.

Details

Here is the interface that you need to use followed by the rough outline of the implementation. Note
that the method signatures refer to the generic Object and uses functors to implement findMax:

/* File: Deck.java */
package cop3530;
public interface Deck
{

public void perfectShuffle();
public int locateSpecial();
public Object findMax(Object [] a, int startIndex, int incrIndex, Comparator cmp)

}

/* File: Shuffle.java */
package cop3530;
import java.util.Comparator;

class aCard
{

/* Some constructor to be implemented here */
public String toString() { /* Implementation not shown */ }
public boolean equals(Object rhs) { /* Implementation not shown */ }
public Object getCard() { /* Implementation not shown */ }
/* The private data field(s) here */

}

class deckOfCards implements Deck
{

/* Some constructor to be implemented here */
public void perfectShuffle() { /* Implementation not shown */ }
public int locateSpecial() { /* Implementation not shown */ }
public Object findMax(Object [] a, int startIndex,

int incrIndex, Comparator cmp) { /* Implementation not shown */ }
public Object getDeck() { /* Implementation not shown */ }
/* The private data field(s) here */

}

class ShuffleTest
{

private static class usingPerfectOrder implements Comparator
{

public int compare(Object obj1, Object obj2)
{ /* Implementation not shown */ }

}
public static void main(String [] args)
{ /* Implementation not shown */ }

}

