
03/27/03 Lecture 19 1

Hash Table
• Data Structure for:

– Insert
– Search or retrieve
– Delete

• Very efficient
• Content-based data structure

– Use value as an index
• Works if range of values are small

– Use HASH value as an index
• Works if HASH function is “good”

• A COLLISION occurs when two values have the same HASH
value

• A “good” HASH function is one that causes few or no
COLLISIONS.

03/27/03 Lecture 19 2

Simple hash functions
hashValue (x) = x % tableSize

• Let tableSize = 100
– X = 173, hashValue(X) = 73
– X = 3452, hashValue(X) = 52
– X = 9758, hashValue(X) = 58
– X = 800, hashValue(X) = 0

hashValue (x) = x3S3 + x2S2 + x1S1 + x0S0 % tableSize
• Let S = 128

– X = comb,
hashValue(X) = (‘c’ 1283 + ‘o’ 1282 + ‘m’ 1281 + ‘b’ 1280)%tableSize

– X = eye,
hashValue(X) = (‘e’ 1282 + ‘y’ 1281 + ‘e’ 1280)% tableSize

03/27/03 Lecture 19 3

Collision Resolution
• Perfect hash functions: no collisions.
• Perfect hash functions can be built if the input data is

known beforehand. But they are difficult to design.
• For perfect hash functions, all operations can be perfromed

in O(1) time.
• If input is not known beforehand, then perfect hash

functions are impossible to design.
• So collisions are inevitable.
• How to deal with collisions?
• LINEAR PROBING:

– If the location where an item is to be inserted is already
occupied (COLLISION), then scan sequentially until an empty
location is found, and insert new item there.

03/27/03 Lecture 19 4

Figure 20.4
Linear probing
hash table after
each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/27/03 Lecture 19 5

Problems with Linear Probing
• PRIMARY CLUSTERING

– Large blocks of occupied cells are formed.
– Amount of clustering and size of clusters is dependent on

LOAD FACTOR (fraction of table that is occupied).
– It deteriorates the performance.

• NAÏVE ANALYSIS:
– If load factor is F, and table size is T, then the average time

for search is FT.
• INCORRECT !!

– If load factor is F, then the average time for search is:
• 1 + 1/(1-F)2)/2

– If F = 50%, then the average cluster time is 2.5
– If F = 90%, then the average cluster time is 50.5

03/27/03 Lecture 19 6

Clustering
• Linear Probing leads to primary clustering

• LINEAR PROBING: Try H, H+1, H+2, H+3, …
• QUADRATIC PROBING: Try H, H+12, H+22, H+32, …

– Seems to eliminate primary clustering
• Linear Probing also leads to secondary clustering

– This is when large clusters merge to become larger clusters.
– It is not clear if quadratic probing eliminates it.

• DOUBLE HASHING: Try H1(x), H1(x) + H2(x), H1(x) + 2H2(x),
H1(x) + 3H2(x), …

• This is an improvement over quadratic probing. But more
expensive to implement.

• SEPARATE CHAINING: need linked list or dynamic arrays.

03/27/03 Lecture 19 7

Deletions & Performance
• DELETES:

– Need to be careful to leave a “marker”.

• OPTIMAL VALUES OF LOAD FACTORS
• Doubling table size if load factors become high.
• REHASHING

• Hashing works very well in practice, and is widely used.
• Used to implement SYMBOL TABLES in compilers and

various software systems.
• How does it compare to BST?

– O(log N) versus O(1)

03/27/03 Lecture 19 8

Figure 20.5
Illustration of primary clustering in linear probing (b) versus no clustering (a)
and the less significant secondary clustering in quadratic probing (c). Long
lines represent occupied cells, and the load factor is 0.7.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/27/03 Lecture 19 9

Figure 20.6
A quadratic
probing hash table
after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Hash Table
	Simple hash functions
	Collision Resolution
	Problems with Linear Probing
	Clustering
	Deletions & Performance

