
04/03/03 Lecture 20 1

Figure 14.2
Adjacency list representation of the graph shown in Figure 14.1; the nodes in
list i represent vertices adjacent to i and the cost of the connecting edge.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 2

Shortest Paths
• Suppose we are interested in the

shortest paths (and their lengths)
from vertex “Miami” to all other
vertices in the graph.

• We need to augment the data
structure to store this information.

04/03/03 Lecture 20 3

Figure 14.4
An abstract scenario of the data structures used in a shortest-path
calculation, with an input graph taken from a file. The shortest weighted path
from A to C is A to B to E to D to C (cost is 76).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 4

Vertex Object
// Represents a vertex in the graph.
class Vertex
{ public String name; // Vertex name

public List adj; // Adjacent vertices
public double dist; // Cost
public Vertex prev; // Previous vertex on shortest path
public int scratch;// Extra variable used in algorithm

public Vertex(String nm)
{ name = nm; adj = new LinkedList(); reset(); }

public void reset()
{ dist = Graph.INFINITY; prev = null; pos = null; scratch = 0; }

public PriorityQueue.Position pos; // Used for dijkstra2
}

04/03/03 Lecture 20 5

Edge Object
// Represents an edge in the graph.
class Edge
{

public Vertex dest; // Second vertex in Edge
public double cost; // Edge cost

public Edge(Vertex d, double c)
{

dest = d;
cost = c;

}
}

04/03/03 Lecture 20 6

Graph Object
// Graph class: evaluate shortest paths.
//
// CONSTRUCTION: with no parameters.
//
// ******************PUBLIC OPERATIONS*********
// void addEdge(String v, String w, double cvw)
// --> Add additional edge
// void printPath(String w) --> Print path after alg is run
// void unweighted(String s) --> Single-source unweighted
// void dijkstra(String s) --> Single-source weighted
// void negative(String s) --> Single-source negative

weighted
// void acyclic(String s) --> Single-source acyclic

04/03/03 Lecture 20 7

getVertex Method
public class Graph {

public static final double INFINITY = Double.MAX_VALUE;
private Map vertexMap = new HashMap(); // Maps String to Vertex

/** If vertexName is not present, add it to vertexMap.
* * In either case, return the Vertex. */
private Vertex getVertex(String vertexName)
{

Vertex v = (Vertex) vertexMap.get(vertexName);
if(v == null)
{

v = new Vertex(vertexName);
vertexMap.put(vertexName, v);

}
return v;

}

04/03/03 Lecture 20 8

addEdge Method

/**
* Add a new edge to the graph.
*/

public void addEdge(String sourceName, String destName,
double cost)
{

Vertex v = getVertex(sourceName);
Vertex w = getVertex(destName);
v.adj.add(new Edge(w, cost));

}

04/03/03 Lecture 20 9

printPath Method
/**
* Recursive routine to print shortest path to dest
* after running shortest path algorithm. The path
* is known to exist.
*/

private void printPath(Vertex dest)
{

if(dest.prev != null)
{

printPath(dest.prev);
System.out.print(" to ");

}
System.out.print(dest.name);

}

04/03/03 Lecture 20 10

clearAll Method
/**
* Initializes the vertex output info prior to running
* any shortest path algorithm.
*/

private void clearAll()
{

for(Iterator itr = vertexMap.values().iterator();
itr.hasNext();)

((Vertex)itr.next()).reset();
}

04/03/03 Lecture 20 11

Unweighted Shortest Path Problem
/**

* A main routine that:
* 1. Reads a file containing edges (supplied as a command-
line parameter);
* 2. Forms the graph;
* 3. Repeatedly prompts for two vertices and
* runs the shortest path algorithm.
* The data file is a sequence of lines of the format
* source destination.
*/

04/03/03 Lecture 20 12

Figure 14.5
Data structures used in a shortest-path calculation, with an input graph taken
from a file; the shortest weighted path from A to C is A to B to E to D to C
(cost is 76).

Legend: Dark-bordered boxes are
Vertex objects. The unshaded portion in
each box contains the name and
adjacency list and does not change
when shortest-path computation is
performed. Each adjacency list entry
contains an Edge that stores a reference
to another Vertex object and the edge
cost. Shaded portion is dist and prev,
filled in after shortest path computation
runs.
Dark arrows emanate from vertexMap.
Light arrows are adjacency list entries.
Dashed arrows are the prev data
member that results from a shortest-path
computation.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 13

Figure 14.16
The graph, after the starting vertex has been marked as reachable in zero
edges

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 14

Figure 14.17
The graph, after all the vertices whose path length from the starting vertex is
1 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 15

Figure 14.18
The graph, after all the vertices whose shortest path from the starting vertex
is 2 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 16

Figure 14.19
The final shortest paths

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 17

Figure 14.20
If w is adjacent to v and there is a path to v, there also is a path to w

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 18

Figure 14.21A
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 19

Figure 14.21B
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 20

public static void main(String [] args) {
Graph g = new Graph();
BufferedReader graphFile=new BufferedReader(FileReader(args[0]));
// Read the edges and insert
String line;
while((line = graphFile.readLine()) != null)
{

StringTokenizer st = new StringTokenizer(line);
if(st.countTokens() != 3) { // some error message
}
String source = st.nextToken();
String dest = st.nextToken();
int cost = Integer.parseInt(st.nextToken());
g.addEdge(source, dest, cost);

}
// Read the queries
BufferedReader in = new BufferedReader(new InputStreamReader(

System.in));
while(processRequest(in, g)) ; // while loop body is empty

}

04/03/03 Lecture 20 21

processRequest Method
public static boolean processRequest(BufferedReader in,

Graph g)
{

String startName = null, destName = null, alg = null;
System.out.print("Enter start node:");
if((startName = in.readLine()) == null) return false;
System.out.print("Enter destination node:");
if((destName = in.readLine()) == null) return false;

g.unweighted(startName); // changes with algorithm
g.printPath(destName);
return true;

}

04/03/03 Lecture 20 22

SP – unweighted graphs
public void unweighted(String startName) {

clearAll();
Vertex start = (Vertex) vertexMap.get(startName);
LinkedList q = new LinkedList();
q.addLast(start); start.dist = 0;
while(!q.isEmpty()) {

Vertex v = (Vertex) q.removeFirst();
for(Iterator itr = v.adj.iterator(); itr.hasNext();) {

Edge e = (Edge) itr.next();
Vertex w = e.dest;
if(w.dist == INFINITY) {

w.dist = v.dist + 1;
w.prev = v;
q.addLast(w);

}
}

}
}

04/03/03 Lecture 20 23

Figure 14.23
The eyeball is at v and w is adjacent, so Dw should be lowered to 6.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 24

Figure 14.24
If Dv is minimal among all unseen vertices and if all edge costs are
nonnegative, Dv represents the shortest path.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 25

Figure 14.25A
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 26

Figure 14.25B
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 27

Class Path
// Represents an entry in the priority queue for Dijkstra's algorithm.
class Path implements Comparable
{

public Vertex dest; // w
public double cost; // d(w)
public Path(Vertex d, double c)
{

dest = d;
cost = c;

}
public int compareTo(Object rhs)
{

double otherCost = ((Path)rhs).cost;
return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;

}
}

04/03/03 Lecture 20 28

public void dijkstra(String startName) {
PriorityQueue pq = new BinaryHeap();
Vertex start = (Vertex) vertexMap.get(startName);
clearAll();
pq.insert(new Path(start, 0)); start.dist = 0;
int nodesSeen = 0;
while(!pq.isEmpty() && nodesSeen < vertexMap.size()) {

Path vrec = (Path) pq.deleteMin();
Vertex v = vrec.dest;
if(v.scratch != 0) continue; // already processed v
v.scratch = 1; nodesSeen++;
for(Iterator itr = v.adj.iterator(); itr.hasNext();) {

Edge e = (Edge) itr.next();
Vertex w = e.dest;
double cvw = e.cost;
if(w.dist > v.dist + cvw) {

w.dist = v.dist +cvw; w.prev = v;
pq.insert(new Path(w, w.dist));

}
}

}
}

04/03/03 Lecture 20 29

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 30

Figure 14.30B
A topological sort. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 31

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 32

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 33

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 34

Figure 14.34
An event-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 35

Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 36

Figure 14.36
Latest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 37

Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge
item)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/03/03 Lecture 20 38

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Shortest Paths
	Vertex Object
	Edge Object
	Graph Object
	getVertex Method
	addEdge Method
	printPath Method
	clearAll Method
	Unweighted Shortest Path Problem
	processRequest Method
	SP – unweighted graphs
	Class Path

