
04/10/03 Lecture 22 1

Priority Queues
• It is a variant of queues
• Each item has an associated priority

value.
• When inserting an item in the queue,

the priority value is also provided for
it.

• The data structure provides a method
to delete the item with the highest
priority.

04/10/03 Lecture 22 2

Priority Queues
package weiss.nonstandard;

// PriorityQueue interface
//
// ******************PUBLIC OPERATIONS*********************
// Position insert(x) --> Insert x
// Comparable deleteMin()--> Return and remove smallest item
// Comparable findMin() --> Return smallest item
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items
// int size() --> Return size
// void decreaseKey(p, v)--> Decrease value in p to v
// ******************ERRORS********************************
// Throws UnderflowException for findMin and deleteMin when empty

04/10/03 Lecture 22 3

Applications of Priority Queues
• Implementing job queues in computer

systems, or queues in an emergency
room in a hospital.

• Implementing Dijkstra’s shortest
path algorithm

04/10/03 Lecture 22 4

Binary Search Trees
// BinarySearchTree class
//
// **************PUBLIC OPERATIONS*****************
// void insert(x) --> Insert x O(h)
// void remove(x) --> Remove x O(h)
// void removeMin() --> Remove minimum item O(h)
// Comparable find(x) --> Return item that matches x O(h)
// Comparable findMin() --> Return smallest item O(h)
// Comparable findMax() --> Return largest item O(h)
// boolean isEmpty() --> Return true if empty; else false
// void makeEmpty() --> Remove all items

The height of the tree = ?
O(log n) on the average, and O(n) on the worst case.

04/10/03 Lecture 22 5

Balanced Binary Search Trees
• There can be many binary search trees for the

same data.
• Not all of them have the same characteristics.

Some are better than the others.
• Worst case height of the binary search tree is

O(log n)
• More work when you insert or delete, because you

try to fix any imbalances in the tree caused by the
change.

• No change when you search, because the tree is
still a binary search tree.

04/10/03 Lecture 22 6

Figure 19.19
(a) The balanced tree has a depth of �log N; (b) the unbalanced tree has a
depth of N – 1.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 7

Figure 19.20
Binary search trees that can result from inserting a permutation 1, 2, and 3;
the balanced tree shown in part (c) is twice as likely to result as any of the
others.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 8

Figure 19.22
Minimum tree of height H

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 9

Figure 19.23
Single rotation to fix case 1

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 10

Figure 19.25
Single rotation fixes an AVL tree after insertion of 1.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 11

Applications of Balanced BSTs
• Anywhere where you want to store a

dynamic set of items.
• Static means that the items in the set are

fixed at the start and do not change. To
implement static sets, a sorted array would
do well.

• Dynamic means that the items in the set
are changing (inserts and deletes).

• Balanced BSTs guarantee the worst-case
performance of the data structure.

04/10/03 Lecture 22 12

Disjoint Set Union-Find Data Structure

• Maintains disjoint sets.
• Main operations:

– Union: unions two given sets
– Find: finds set containing given item

04/10/03 Lecture 22 13

Disjoint Set Union-Find Data Structure
public class DisjointSets
{

public DisjointSets(int numElements)
public void union(int root1, int root2)
public int find(int x)
private int [] s;

}

04/10/03 Lecture 22 14

Figure 24.12
A forest and its eight elements, initially in different sets

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 15

Figure 24.13
The forest after the union of trees with roots 4 and 5

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 16

Figure 24.14
The forest after the union of trees with roots 6 and 7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 17

Figure 24.15
The forest after the union of trees with roots 4 and 6

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 18

Figure 24.16
The forest formed by union-by-size, with the sizes encoded as negative
numbers

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 19

Applications: Disjoint Set Union-
Find Data Structure

• Minimum Spanning Tree problem

04/10/03 Lecture 22 20

Figure 24.6
(a) A graph G and (b) its minimum spanning tree

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 21

Figure 24.7 (A)
Kruskal’s algorithm after each edge has been considered. The stages
proceed left-to-right, top-to-bottom, as numbered. (continued)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 22

Figure 24.7 (B)
Kruskal’s algorithm after each edge has been considered. The stages
proceed left-to-right, top-to-bottom, as numbered.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 23

Figure 24.1
A 50 x 88 maze

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 24

Figure 24.2
Initial state: All walls are up, and all cells are in their own sets.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 25

Figure 24.3
At some point in the algorithm, several walls have been knocked down and
sets have been merged. At this point, if we randomly select the wall between
8 and 13, this wall is not knocked down because 8 and 13 are already
connected.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 26

Figure 24.4
We randomly select the wall between squares 18 and 13 in Figure 24.3; this
wall has been knocked down because 18 and 13 were not already
connected, and their sets have been merged.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

04/10/03 Lecture 22 27

Figure 24.5
Eventually, 24 walls have been knocked down, and all the elements are
in the same set.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Priority Queues
	Priority Queues
	Applications of Priority Queues
	Binary Search Trees
	Balanced Binary Search Trees
	Applications of Balanced BSTs
	Disjoint Set Union-Find Data Structure
	Disjoint Set Union-Find Data Structure
	Applications: Disjoint Set Union-Find Data Structure

