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Priority Queues
• It is a variant of queues
• Each item has an associated priority

value.
• When inserting an item in the queue, 

the priority value is also provided for 
it.

• The data structure provides a method 
to delete the item with the highest 
priority.



04/10/03 Lecture 22 2

Priority Queues
package weiss.nonstandard;

// PriorityQueue interface
//
// ******************PUBLIC OPERATIONS*********************
// Position insert( x )   --> Insert x
// Comparable deleteMin( )--> Return and remove smallest item
// Comparable findMin( )  --> Return smallest item
// boolean isEmpty( )     --> Return true if empty; else false
// void makeEmpty( )      --> Remove all items
// int size( )            --> Return size
// void decreaseKey( p, v)--> Decrease value in p to v
// ******************ERRORS********************************
// Throws UnderflowException for findMin and deleteMin when empty



04/10/03 Lecture 22 3

Applications of Priority Queues
• Implementing job queues in computer 

systems, or queues in an emergency 
room in a hospital.

• Implementing Dijkstra’s shortest 
path algorithm
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Binary Search Trees
// BinarySearchTree class
//
// **************PUBLIC OPERATIONS*****************
// void insert( x )       --> Insert x O(h)
// void remove( x )       --> Remove x O(h)
// void removeMin( )      --> Remove minimum item O(h)
// Comparable find( x )   --> Return item that matches x O(h)
// Comparable findMin( )  --> Return smallest item O(h)
// Comparable findMax( )  --> Return largest item O(h)
// boolean isEmpty( )     --> Return true if empty; else false
// void makeEmpty( )      --> Remove all items

The height of the tree = ?
O(log n) on the average, and O(n) on the worst case.
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Balanced Binary Search Trees
• There can be many binary search trees for the 

same data. 
• Not all of them have the same characteristics. 

Some are better than the others. 
• Worst case height of the binary search tree is 

O(log n)
• More work when you insert or delete, because you 

try to fix any imbalances in the tree caused by the 
change.

• No change when you search, because the tree is 
still a binary search tree. 
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Figure 19.19
(a) The balanced tree has a depth of �log N; (b) the unbalanced tree has a 
depth of N – 1.
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Figure 19.20
Binary search trees that can result from inserting a permutation 1, 2, and 3; 
the balanced tree shown in part (c) is twice as likely to result as any of the 
others.
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Figure 19.22
Minimum tree of height H
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Figure 19.23
Single rotation to fix case 1
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Figure 19.25
Single rotation fixes an AVL tree after insertion of 1.
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Applications of Balanced BSTs
• Anywhere where you want to store a 

dynamic set of items.
• Static means that the items in the set are 

fixed at the start and do not change. To 
implement static sets, a sorted array would 
do well.

• Dynamic means that the items in the set 
are changing (inserts and deletes). 

• Balanced BSTs guarantee the worst-case 
performance of the data structure.
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Disjoint Set Union-Find Data Structure

• Maintains disjoint sets.
• Main operations:

– Union: unions two given sets
– Find: finds set containing given item
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Disjoint Set Union-Find Data Structure
public class DisjointSets
{

public DisjointSets( int numElements )
public void union( int root1, int root2 )
public int find( int x )
private int [ ] s;

}
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Figure 24.12
A forest and its eight elements, initially in different sets
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Figure 24.13
The forest after the union of trees with roots 4 and 5

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



04/10/03 Lecture 22 16

Figure 24.14
The forest after the union of trees with roots 6 and 7
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Figure 24.15
The forest after the union of trees with roots 4 and 6
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Figure 24.16
The forest formed by union-by-size, with the sizes encoded as negative 
numbers
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Applications: Disjoint Set Union-
Find Data Structure

• Minimum Spanning Tree problem
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Figure 24.6
(a) A graph G and (b) its minimum spanning tree
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Figure 24.7 (A)
Kruskal’s algorithm after each edge has been considered. The stages 
proceed left-to-right, top-to-bottom, as numbered. (continued)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



04/10/03 Lecture 22 22

Figure 24.7 (B)
Kruskal’s algorithm after each edge has been considered. The stages 
proceed left-to-right, top-to-bottom, as numbered.
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Figure 24.1
A 50 x 88 maze
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Figure 24.2
Initial state: All walls are up, and all cells are in their own sets.
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Figure 24.3
At some point in the algorithm, several walls have been knocked down and 
sets have been merged. At this point, if we randomly select the wall between 
8 and 13, this wall is not knocked down because 8 and 13 are already 
connected.
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Figure 24.4
We randomly select the wall between squares 18 and 13 in Figure 24.3; this 
wall has been knocked down because 18 and 13 were not already 
connected, and their sets have been merged.
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Figure 24.5
Eventually, 24 walls have been knocked down, and all the elements are 
in the same set.
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