How to search In a sorted list

/[Test program
public static void main(String [] args)
{
int SIZE = 8;
Comparable [] a = new Integer [SIZE];
for(inti=0;i<SIZE; i++)
a[1] =new Integer(i*2);

for(inti=0;i<SIZE * 2; i++)
System.out.printin("Found " + i+ " at" +
binarySearch(a, new Integer(i)));

public class BinarySearch // Fig 5.11, pg168
{
public static final int NOT_FOUND = -1;
public static int binarySearch
(Comparable [] a, Comparable x)
{
int low = 0;
int high = a.length - 1;
int mid;
while(low <= high)
{
mid = (low + high) / 2;
if(a[mid].compareTo(x)<0)
low = mid + 1; }
else if(a[mid]J.compareTo(x)>0)
high = mid - 1;
else
return mid;
}
return NOT_FOUND; //NOT_FOUND =-1
}
Lecture 7

02/03/04

02/03/04

Stacks and Queues

public interface Stack

{// Fig 6.21, p206
public Object push(Object x);
public Object pop();
public boolean isEmpty();

}

public interface Queue

{ /I Fig 6.23, p209
public boolean isEmpty();
public void enqueue(Object x);
public Object dequeue();

}

Lecture 7

Stacks & Queues — Implementations

public class Stack implements Serializable
{ // Fig 16.28, p532
public Object push(Object x)
{
items.add(x);
return X;
}
public Object pop()
{
If(ISEmpty())
throw new EmptyStackException();
return items.remove(items.size() - 1);
}
public boolean isEmpty()
{ returnsize()==0; }

private ArrayL.ist items;
// LinkedL.ist????
b

public class ListQueue implements Queue
{ // Fig 16.25, p529
public boolean iIsEmpty()
{ return front == null; }
public void enqueue(Object x)
{ if(isEmpty())
back = front = new ListNode(X);
else // Regular case
back = back.next = new ListNode(X);
¥
public Object dequeue()
{ if(iIsEmpty())
throw new UnderflowException(""");
Object returnValue = front.element;
front = front.next;
return returnValue;

}

private ListNode front;
private ListNode back;

}

02/03/04 Lecture 7

Stacks: Application 1

» Check balanced parentheses

* ()00
* ((OONO

While (expr.nextToken())
{
if next token is “(“
push “(** on stack;
else
If stack is not empty
pop “(“ from stack;
else report error;
}
If stack is not empty
report error;

02/03/04 Lecture 7

Stacks: Application 2

Evaluate Postfix Expressions
123+*
=(1*(2+3))
41223*M+-1*+
=7

02/03/04

While (expr.nextToken())
{
If next token is an operand
push operand on stack;
else if next token is an operator Op
{
pop Vall from stack;
pop Val2 from stack;
compute Vall Op Valz;
push result on stack;
b
If stack has only one item
pop value and return as Value of expr;
else report error;

}

Lecture 7 5

Stacks — Applications 3

.Convert Infix Expressions to Postfix

02/03/04 Lecture 7

Recursion

Example 1: Fibonacci Numbers
1,2,3,5,8,13, 21, 34,55, 89, ..

public static long fib(int n)
{
if (n<=1)
return n;
else
return fib(n-1) + fib(n-2);
}

Example 2: Towers of Hanoi

02/03/04 Lecture 7

Recursion

Example 1: Fibonacci Numbers
1,2,3,5,8,13, 21, 34,55, 89, ..

public static long fib(int n)
{
if (n<=1)
return n;
else
return fib(n-1) + fib(n-2);
}

Example 2: Towers of Hanoi

02/03/04 Lecture 7

Figure

2.11

Recursive calls that rabbi1t(7) generates

rabbit(7)

return rabbit(6) + rabbit(5)

l

v

rabbit(6)

return rabbit(5) + rabbit(4)

\

rabbit(5)

return rabbit(4) + rabbit(3)

v

Y

rabbit(5)

return rabbit(4) + rabbit(3)

rabbit(4)

return rabbit(3) + rabbit(2)

Y

Y

rabbit(4)

return rabbit(3) + rabbit(2)

rabbit(3)

return rabbit(2) + rabbit(l)

[

rabbit(4) rabbit(3) rabbit(3) rabbit(2) rabbit(2) rabbit(1)
return rabbit(3) + rabbit(2) return rabbit(2) + rabbit(l) return rabbit(2) + rabbit(1l) return 1 return 1 return 1
v Y ; v
rabbit(3) rabbit(2) rabbit(2) rabbit(1) rabbit(2) rabbit(1l) rabbit(3) rabbit(2)
return rabbit(2) 4 rabbit(1l) return 1 return 1 return 1 return 1 return 1 return rabbit(2) + rabbit(l) return 1
Y Y
rabbit(2) rabbit(1l) rabbit(2) rabbit(1)
return 1 return 1 return 1 return 1

Figure 2.19a and b

a) The initial state; b) move n - 1 disks from Ato C

10

Figure 2.19c and d

c) move one disk from A to B; d) move n - 1 disks from C to B

11

Sample output

Move top disk from po
Move top disk from po
Move top disk from po
Move top disk from po
Move top disk from po
Move top disk from po
Move top disk from po

e A o po
e A to po

e B
e C

e B to pole C
e A to pole B
e C to pole A
e C to pole B
e A to pole B

02/03/04 Lecture 7

12

SolveTowers Solution

public static void solveTowers(int count, char source,
char destination, char spare)
{
if (count == 1) {
System.out.printin("Move top disk from pole '
" to pole " + destination);

+ source +

}

else {
solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare); /Y
solve Towers(count-1, spare, destination, source); // Z
} // endif
} // end solveTowers

02/03/04 Lecture 7

13

Figure 2.20

The order of recursive calls that results from solveTowers(3, A, B, C)

solveTowers(3,A,B,C)

v

Y

Y

solveTowers(2,A,C,B)

solveTowers(1l,A,B,C)

solveTowers(2,C,B,A)

Y

solveTowers(1,A,B,C)

4

solveTowers(1l,A,C,B)

02/03/04

Y

solveTowers(1,B,C,A)

Y

solveTowers(1,C,A,B)

Lecture 7

9

solveTowers(1,C,B,A)

y

10

solveTowers(1,A,B,C)

14

Figure 2.21a

Box trace of solveTowers(3, “A’, “B?, “C?)

The initial call 1 is made, and solveTowers begins execution:

count =
source =
dest =
spare =

QO wprE w

At point X, recursive call 2 is made, and the new invocation of the method begins execution:

count = 3 count 2
source = A X source = A
dest = B dest = C
spare = C spare = B

At point X, recursive call 3 is made, and the new invocation of the method begins execution:

count 3 count = 2 count =1
source = A X source = A X source = A
dest = B dest = C dest = B
spare = C spare = B spare = C

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count = 3 count 2 | count = 1}
source = A X source = A | source = A |
dest =B dest = C | dest = B |
spare = C spare = B lspare = CJ

15

Figure 2.21b

Box trace of solveTowers(3, “A’, “B?, “C?)

At point Y, recursive call 4 is made, and the new invocation of the method begins execution:

count = 3 count 2 count =1
source = A X source = A Y source = A
dest = B dest = C dest = C
spare = C spare = B spare = B

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count = 3 count 2 {count l}
source = A X source = A | source = A |
dest =B dest = C | dest =c
spare = C spare = B :-spare = BJI

At point Z, recursive call 5 is made, and the new invocation of the method begins execution:

count 3 count = 2 count =1
source = A X source = A VA source = B
dest =B dest = C dest = C
spare = C spare = B spare = A

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count = 3 count = 2 rcount = 1]
source = A X source = A | source = B |
dest =B dest =C | dest = C|
spare = C spare = B :-spare = A-:

Figure 2.21c

Box trace of solveTowers(3,

This invocation completes, the return

recursive call 6 is made, and the new invocation of the method begins execution:

[—————~—
count 3 |count 2
source = A | source = A |
dest = B | dest = C
spare = C | spare =B

L e e e —

At point Y,
count = 3 count 1
source = A source = A
dest = B dest = B
spare = C spare = C

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count
source
dest
spare

O WP w

At point Z,

recursive call 7 is made, and the new invocation of the method begins execution:

count
source
dest
spare

o
AOw>» w

r
| count
| source =

| spare =
L

1

A
| dest = B |

C

count
source
dest
spare

]
P WO~

Il

‘A,’

‘B1’

r-————7 1
| count 1|
| source = B |
| dest =Cl
| spare = Al
e,]

C")

is made, and the method continues execution.

17

Figure 2.21d

Box trace of solveTowers(3, “A’, “B?, “C?)

At point X, recursive call 8 is made, and the new invocation of the method begins execution:

count = 3 count = 2 count 1
source = A z source = C X source = C
dest = B dest = B dest A
spare = C Spare = A spare = B

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count 3 count 2 |rcount 1 -:
source = A Z source = C | source = C |
dest =B dest =B ldest = Al
spare = C spare = A lspare = BJ

At point Y, recursive call 9 is made, and the new invocation of the method begins execution:

count = 3 count 2 count 1
source = A Z source = C Y source = C
dest =B dest = B dest = B
spare = C spare = A spare = A

This is the base case, so a disk is moved, the return is made, and the method continues execution.

count = 3 count = 2 [count = 1}
source = A Z source = C | source = C |
dest B dest =B | dest =B 18
spare = C spare = A lspare = AJ

Figure 2.21e

Box trace of solveTowers(3, “A’, “B?, “C?)

At point Z, recursive call 10 is made, and the new invocation of the method begins execution:

count = 3 count = 2 count =1

source = A / source = C / source = A
e _—

dest B dest = B dest B

spare = C spare = A spare = C

This is the base case, so a disk is moved, the return is made, and the method continues execution.

r—-——=——7 1
count = 3 count 2 | count 1
source = A VA source = C | source = A
dest = B | dest =B | dest = B
spare = C spare = A :-spare = C}
This invocation completes, the return is made, and the method continues execution.
______ 1 - T T T
count = 3 | Spare 2 | count = 1,
source = A | source = C | source =
dest =B | dest = B | | dest = B |
spare = C | spare = AJ | spare = CJI
02/03/04 Lecture 7

19

	Stacks: Application 1
	Stacks: Application 2
	Recursion
	Recursion
	Sample output
	SolveTowers Solution

