
03/11/04 Lecture 18 1

Figure 20.4
Linear probing
hash table after
each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 2

Figure 20.6
A quadratic
probing hash table
after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 3

Graphs
• Graphs model networks of various

kinds: roads, highways, oil pipelines,
airline routes, dependency
relationships, etc.

• Graph G(V,E)
• V Vertices or Nodes
• E Edges or Links: pairs of vertices
• Directed vs. Undirected edges

03/11/04 Lecture 18 4

03/11/04 Lecture 18 5

Graphs
• Graphs can be augmented to

store extra info (e.g., city
population, oil flow capacity, etc.)

• Weighted vs. Unweighted
• Paths and Cycles

03/11/04 Lecture 18 6

Figure 14.1
A directed graph.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 7

Figure 14.2
Adjacency list representation of the graph shown in Figure 14.1; the nodes in
list i represent vertices adjacent to i and the cost of the connecting edge.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 8

Adjacency Lists
• Constructing adjacency lists

– Input: list of edges
– Output: adjacency list for all vertices
– Time: O(L), where L is length of list of edges.

• Check if edge exists
– Input: edge (u,v)
– Output: does the edge exist in the graph G?
– Time: O(du), where du is the number of entries

in u’s adjacency list. In the worst case it is
O(N), where N is the number of vertices

• Need a MAP data structure to map vertex
name or ID to (internal) vertex number.

03/11/04 Lecture 18 9

Shortest Paths
• Suppose we are interested in the

shortest paths (and their lengths)
from vertex “Miami” to all other
vertices in the graph.

• We need to augment the data
structure to store this information.

03/11/04 Lecture 18 10

Figure 14.4
An abstract scenario of the data structures used in a shortest-path
calculation, with an input graph taken from a file. The shortest weighted path
from A to C is A to B to E to D to C (cost is 76).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 11

Figure 14.5
Data structures used in a shortest-path calculation, with an input graph taken
from a file; the shortest weighted path from A to C is A to B to E to D to C
(cost is 76).

Legend: Dark-bordered boxes are
Vertex objects. The unshaded portion in
each box contains the name and
adjacency list and does not change
when shortest-path computation is
performed. Each adjacency list entry
contains an Edge that stores a reference
to another Vertex object and the edge
cost. Shaded portion is dist and prev,
filled in after shortest path computation
runs.
Dark arrows emanate from vertexMap.
Light arrows are adjacency list entries.
Dashed arrows are the prev data
member that results from a shortest-path
computation.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 12

Figure 14.16
The graph, after the starting vertex has been marked as reachable in zero
edges

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 13

Figure 14.17
The graph, after all the vertices whose path length from the starting vertex is
1 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 14

Figure 14.18
The graph, after all the vertices whose shortest path from the starting vertex
is 2 have been found

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 15

Figure 14.19
The final shortest paths

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 16

Figure 14.20
If w is adjacent to v and there is a path to v, there also is a path to w

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 17

Figure 14.21A
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 18

Figure 14.21B
Searching the graph in the unweighted shortest-path computation. The
darkest-shaded vertices have already been completely processed, the
lightest-shaded vertices have not yet been used as v, and the medium-
shaded vertex is the current vertex, v. The stages proceed left to right, top to
bottom, as numbered.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 19

Figure 14.23
The eyeball is at v and w is adjacent, so Dw should be lowered to 6.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 20

Figure 14.24
If Dv is minimal among all unseen vertices and if all edge costs are
nonnegative, Dv represents the shortest path.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 21

Figure 14.25A
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 22

Figure 14.25B
Stages of Dijkstra’s algorithm. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 23

Figure 14.28
A graph with a negative-cost cycle

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 24

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 25

Figure 14.30B
A topological sort. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 26

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 27

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 28

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 29

Figure 14.34
An event-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 30

Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 31

Figure 14.36
Latest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 32

Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge
item)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/04 Lecture 18 33

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Graphs
	Graphs
	Adjacency Lists
	Shortest Paths

