\qquad

Giri Narasimhan

ECS 389; Phone: x3748
giri@cs.fiu.edu
www.cs.fiu.edu/~giri/teach/5407F05.html
8/30/05
COT 5407
1
Quote by Charles Babbage
As soon as an Analytical Engine exists, it will
necessarily guide the future course of the
science. Whenever any result is sought by its
aid, the question will then arise - by what
course of calculation can these results be
arrived at by the machine in the shortest
time?
Charles Babbage (1864)

History of Babbage:
http://ei.cs.vtedu/~history/Babbage. html
cor s407

\qquad
As soon as an Analytical Engine exists, it will necessarily guide the future course of the \qquad science. Whenever any result is sought by its aid, the question will then arise - by what \qquad
\qquad
\qquad
\qquad
\qquad

Search

- You are asked to guess a number X that is known to be an integer lying between integers A and B. How many guesses do you need in the worst case? \qquad - Use binary search; Number of guesses $=\log _{2}(B-A)$

You are asked to guess a positive integer X. How many guesses do you need in the worst case?

- NOTE: No upper bound is known for the number.
- Algorithm:
- figure out B (by using Doubling Search)
- perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B, we have: $\log _{2}(B / 2)<\log _{2} X$,
- Number of guesses < $2 \log _{2} X-1$

8/30/05
COT 5407
4

Polynomials

- Given a polynomial
$-p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$ compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?
- Simple solution:
- Number of additions = n
- Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Improved solution using Horner's rule: \qquad
- $\left.p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) . ..\right)\right)$
- Number of additions $=n$
- Number of multiplications $=n$

8/30/05 COT 5407
5

Celebrity Problem

- A Celebrity is one that knows nobody and that
everybody knows.
Celebrity Problem:
INPUT: n persons with a $\mathrm{n} \times \mathrm{n}$ information matrix.
OUTPUT: Find the "celebrity", if one exists.
MODEL: Only allowable questions are:
- Does personi know person j ?
- Naive Algorithm: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Questions.
- Using Divide-and-Conquer: $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$ Questions.
- Improved solution? $8 / 3005$$\quad$ cor 5407

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Celebrity Problem (Cont'd)

- Naive Algorithm: O(n²) Questions.
- Ask everyone of everyone else for a total of $n(n-1)$ questions
- Using Divide-and-Conquer: O($\mathrm{n} \log _{2} \mathrm{n}$) Questions.
- Divide the people into two equal sets. Solve recursively and find two candidate celebrities from the two halves. Then verify which one (if any) is a celebrity by asking n -1
questions to each of them and $n-1$ questions to everyone else about them. This gives a recurrence for the total number of questions asked: $T(n)=2 T(n / 2)+4(n-1)$
- Improved solution?
- Hint: What information do you gain by asking one question?

8/30/05 \quad COT 5407

Celebrity Problem (Cont'd)

- Induction Hypothesis 2: We know how to find n2 non-celebrities among a set of $n-1$ people, i.e., we know how to find at most one person among a set of $n-1$ people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.

