Animations

- BST: http://babbage.clarku.edu/~achou/cs160/bst_animation/BST-Example.html
- Rotations: http://babbage.clarku.edu/~achou/cs160/bst_animation/index2.html

Red-Black (RB) Trees

- Every node in a red-black tree is colored either red or black.
 - The root is always black.
 - Every path on the tree, from the root down to the exterior, has the same number of black nodes.
 - No red node has a red child.
- Every RB-Tree with n nodes has height at most $2 \log n$

Red-Black Trees

 RB-Insert (T, z) // pg 261
 // Insert node z in tree T
 $y \leftarrow$ NIL
 $x \leftarrow$ root(T)
 while $(x \neq$ NIL) do
 $y \leftarrow x$
 if $(\text{key}[z] < \text{key}[x])$
 $x \leftarrow$ left$[x]$
 else $x \leftarrow$ right$[x]$
 $p[z] \leftarrow y$
 if ($y ==$ NIL)
 root$(T) \leftarrow z$
 else if $(\text{key}[z] < \text{key}[y])$
 left$[y] \leftarrow z$
 else right$[y] \leftarrow z$
 // new stuff
 left$[z] \leftarrow$ NIL
 right$[z] \leftarrow$ NIL
 color$[z] \leftarrow$ RED
 RB-Insert-Fixup $(T, z)$$\text{while (color}[p[z]] \text{== RED}) \text{do}$
 if ($p[z] = \text{left}[p[p[z]]]$)
 $y \leftarrow \text{right}[p[p[z]]]$
 if $(\text{color}[y] \text{== RED})$ then // C-1
 color$[p[z]] \leftarrow$ BLACK
 color$[y] \leftarrow$ BLACK
 $z \leftarrow p[p[z]]$
 color$[z] \leftarrow$ RED
 else if ($z = \text{right}[p[z]]$) then // C-2
 $z \leftarrow p[z]$
 LeftRotate(T, z)
 color$[p[z]] \leftarrow$ BLACK // C-3
 color$[p[p[z]]] \leftarrow$ RED
 else $\text{right}[z] \leftarrow$ z
 // symmetric code: "right" \leftrightarrow "left"
 else if ($z = \text{right}[p[z]]$) then // C-2
 $z \leftarrow p[z]$
 RightRotate$(T, p[z])$
 else $\text{left}[z] \leftarrow$ z
 // symmetric code: "left" \leftrightarrow "right"
 color[root[T]] \leftarrow BLACK
Rotations

LeftRotate(T,x) // pg 278
// right child of x becomes x’s parent.
// Subtrees need to be readjusted.
y = right[x]
right[x] = left[y] // y’s left subtree becomes x’s right
p[left[y]] = x
p[y] = p[x]
if (p[x] == NIL[T]) then
 root[T] = y
else if (x == left[p[x]]) then
 left[p[x]] = y
else right[p[x]] = y
left[y] = x
p[x] = y

Augmented Data Structures

- Why is it needed?
 - Because basic data structures not enough for all operations
 - Storing extra information helps execute special operations more efficiently.
- Can any data structure be augmented?
 - Yes. Any data structure can be augmented.
- Can a data structure be augmented with any additional information?
 - Theoretically, yes.
- How to choose which additional information to store.
 - Only if we can maintain the additional information efficiently under all operations. That means, with additional information, we need to perform old and new operations efficiently maintain the additional information efficiently.

New Operations on RB-Trees

- Basic operations
 - RB-Search, RB-Insert, RB-Delete
- New Operations
 - Rank(T,x)
 - Select(T,k)
 - No efficient way to implement them!
 - Unless more information is stored in each node
- What information to be added in each node?
 - Rank information
 - Very useful but hard to maintain under Insert/Delete
 - Size information
 - Useful and easy to maintain under Insert/Delete
How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be maintained for the modifying operations on the underlying data structure.

RB-Tree Augmentation

- Augment x with Size(x), where
 - Size(x) = size of subtree rooted at x
 - Size(NIL) = 0

OS-Select

OS-SELECT(x, i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r = size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)
OS-Rank

OS-RANK(x, y)

// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1. \(r = \text{size}[\text{left}[y]] + 1 \)
2. if \(x = y \) then return \(r \)
3. else if (key[x] < key[y]) then
 4. return OS-RANK(x, left[y])
5. else return \(r + \text{OS-RANK}(x, \text{right}[y]) \)

Time Complexity: \(O(\log n) \)

Augmenting RB-Trees

Theorem 14.1, page 309

Let \(f \) be a field that augments a red-black tree \(T \) with \(n \) nodes, and \(f(x) \) can be computed using only the information in nodes \(x, \text{left}[x], \text{and right}[x], \) including \(f[\text{left}[x]] \) and \(f[\text{right}[x]] \).

Then, we can maintain \(f(x) \) during insertion and deletion without asymptotically affecting the \(O(\log n) \) performance of these operations.

For example,
- \(\text{size}[x] = \text{size}[\text{left}[x]] + \text{size}[\text{right}[x]] + 1 \)
- \(\text{rank}[x] = ? \)

Examples of augmenting information for RB-Trees

- Parent
- Height
- Any associative function on all previous values or all succeeding values.
- Next
- Previous