Greedy Algorithms

Given a set of activities (s;, f;), we want to
schedule the maximum number of non-overlapping
activities.

GREEDY-ACTIVITY-SELECTOR (s, f)

1. n = length[s]

2. S ={ay}

3.i=1

4.for m=2 ton do

5. if s, is not before f; then
6

7

8

S=5U{a,}
. i=m
. refurn S
COT 5407 10/18/05 1

Example

- [1,4],[3.5],[0,6],[5,7],[3.8],[5.9], [6,10], [8,11], [8,12],
[2,13], [12,14] -- Sorted by finish times

- [1,4],[3, 5] [O 61,[5,7], [3.8], [5.9], [6,10], [8,11], [8,12],
[2,13], [12,14]

- [1,4],[3, 5] [0,6],[5.71, [3.8], [6.,9], [6.,10], [8,11], [8,12],
[2,13], [12,14]

- [1,4], [3,5], [0,6],[5,7],[3.8], [5,9], [6,10], [8,11], [8,12],
[2,13], [12,14]

- [1,4], 3, 5] [0 6], 15,71, [3.8], [5.9], [6,10], [8,11], [8,12],
[213],[12,14]

- [1,4],[35], [o 61,[5.71, [3.8], [5.9]. [6.10], [8,11], [8,12],
[2,13], [121

COT 5407 10/18/05 2

Why does it work?

+ THEOREM

Let A be a set of activities and let a, be the activity with
the earliest finish time. Then activity q, is in some
maximum-sized subset of non-overlapping activities.

+ PROOF

Let S' be a solution that does not contain a,. Let a'; be the
activity with the earliest finish time in S'. Then replacing a;
by a, gives a solution S of the same size.

Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

COT 5407 10/18/05 3

Greedy Algorithms — Huffman Coding

Huffman Coding Problem
Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database
contains 1,614,107 sequence entries, comprising 505,947,503 amino
acids. There are 20 possible amino acids. What is the minimum number
of bits to store the compressed database?

~2.5 6 bits or 300MB.
How to improve this?
Information: Frequencies are not the same.

Ala (A)7.72 6In(Q)391 Leu(L)956 Ser(S)6.98
Arg (R) 5.24 Glu(E)654 Lys(K)5.96 Thr(T)552
Asn (N) 4.28 Gly(6)6.90 Met (M)2.36 Trp (W) 118
Asp (D) 5.28 His (H)2.26 Phe (F)4.06 Tyr (Y)3.3
Cys (€) 1.60 Tle (I)5.88 Pro(P)487 Val (V) 6.66

Idea: Use shorter codes for more frequent amino acids and longer
codes for less frequent ones.

COT 5407 10/18/05 4

Huffman Coding

2 million characters in file.
A, C, G T, N Y R S M

IDEA 1: Use ASCIT Code IDEA 3: Use Variable Length How to Decode?

Each need at least 8 bits, Codes Need Unique decoding!
Total = 16 M bits = 2 MB A2z gy Easy for Ideas 14 2.
T What about Idea 3?7

c18 gyq
@18 g0

IDEA 2: Use 4-bit Codes
Each need at least 4 bits,
Total = 8 M bits = 1 MB

110101101110010001100000000110

(]
00011 110101101110010001100000000110

2 million characters in file.
Length = >
Expected length = >
Sum up products of frequency times the code length, i.e.,
(22x2 +.22x2 + 18x3 + 18x3 + .10x3 +.05x5 + .04x5 + .04x5 + 03x5) x 2 M bits =
3.24 Mbits = 4 MB

COT 5407 10/18/05 5

Dynamic Programming

Activity Problem Revisited: Given a set of activities (s;, f)),
we want to schedule the maximum number of non-
overlapping activities.

+ New Approach:

A, = Best solution for intervals {a,, ..., ;} that includes
interval g

B; = Best solution for intervals {q,, ..., a;} that does not
include interval g;

+ Does it solve the problem o compute A;and B?
* How to compute A;and B;?

COT 5407 10/18/05 6

Dynamic Programming

+ Activity Problem Revisited: Given a set of n

activities q; = (s;, f;), we want to schedule the
maximum number of non-overlapping
activities.

* New Approach:

- Observation: To solve the problem on activities
A, ={ay,..,a,}, we notice that either
+ optimal solution does not include a, (Problem on A, ;)

- optimal solution includes a, (Problem on A,, which is
equal to A without activities that overlap a,, I.e., q, is
the last activity that finishes before a, starts.)

COT 5407 10/18/05 7

An efficient implementation

Why not solve the problem on A,,... A, ;,A,?
In what order to solve them?
Is the problem on A, easy?
- YES, trivial
Can the optimal solutions to the problems on
A;,..,A; help to solve the problem on A,,;?
- YES! Either:
- optimal solution does not include a;,; (Problem on A;)

- optimal solution includes a,; (you are left with a
problem on A, which is equal to A, without activities
that overlap a,.,, i.e., a, is the last activity that
finishes before q,,; starts.)

COT 5407 10/18/05 8

Dynamic Programmming: Activity Selection

+ Select the maximum number of non-overlapping

activities from a set of n activities A = {qy, .., a,}
(sorted by finish times).

+ Identify “easier" subproblems to solve.

A ={aj}

A, = {ay, a;}

Az ={a, 0z, a3}, ..,
A=A

+ Subproblems: Select the max number of non-

overlapping activities from A,

COT 5407 10/18/05 9

Dynamic Programmming: Activity Selection

+ Solving for A, solves the original problem.
+ Solving for A, is easy.
+ If you have optimal solutions S, ..., S;; for
subproblems on A, ..., A;_;, how to compute S;?
+ The optimal solution for A, either
- Casel: does not include a; or
- Case 2: includes q;
+ Case I
- 5=5,
+ Case 2:
- 5;=5,U{a}, for some k < .
- How to find such a k? We know that a, cannot overlap a..

COT 5407 10/18/05 10

Dynamic Programmming: Activity Selection

- DP-ACTIVITY-SELECTOR (s, f)
1.n = length[s]
2.N[1]=1 // number of activities in S;
3.F[1]1=1 // last activity in S;
4 for i=2 ton do
5. let k be the last activity finished before s;
6. if (N[i-1]> N[K]) then // Case 1

7. N[i] = NI[i-1]
8. F[i] = F[i-1]
9. else // Case?2 How to output S,?
10. N[i]= N[k] +1 Backtrack!
11. Flil=i Time Complexity?
O(nlgn)
COT 5407 10/18/05 1

Dynamic Programming Features

* Identification of subproblems

 Recurrence relation for solution of
subproblems

« Overlapping subproblems (sometimes)

+ Identification of a hierarchy/ordering
of subproblems

+ Use of table to store solutions of
subproblems (MEMOIZATION)

* Optimal Substructure

COT 5407 10/18/05 12

