
COT 5407:Introduction to Algorithms
Author and Copyright: Giri Narasimhan

Florida International University
Lecture 3: September 4, 2007.

1 Recurrence relations and their solutions

A recurrence relation is useful to express the time complexity of iterative and recursive
algorithms. For example, T1(n) = T1(n − 1) + (n + 2) expresses the time complexity of
an algorithm (such as the iterative SelectionSort) in which the time it takes to solve a
problem on an input of size n is equal to the time it takes to solve a problem on an input
of size n − 1 plus some extra work, which in this case is n − 2 steps. A second example is
also provided to make it more clear. T2(n) = 2T2(n/2) + n expresses the time complexity
of an algorithm (such as the recursive MergeSort) in which the time it takes to solve a
problem on an input of size n is equal to the time it takes to solve two subproblems on inputs
of size n/2 plus the extra work of n steps (in the case of MergeSort, this is the time it
takes to do the Merge of the results form the two subproblems – the “conquer” part of
the divide-and-conquer algorithm). Note that the left-hand side of the recurrence relation
is usually simple the value of the function. The right-hand side of the recurrence relation
consists of some “recurrent” terms (such as T1(n−1) and T2(n/2)) and some “non-recurrent”
terms (such as (n + 2) and n.

There are three ways to solve recurrence relations: (a) the substitution method, (b) the
recursion-tree method, and (c) the master theorem method. All three methods are explained
below.

A typical recurrence relation defines a function T (n) (left-hand side of the relation)
in terms of some non-recurrent terms and some recurrent terms (right hand-side). The
recurrent terms must necessarily be on values smaller than n if we are to be able to solve
them using these methods. For our discussions, we will assume that a recurrence relation
has the following general form

T (n) = F (g(n), T (f1(n)), T (f2(n), . . . , T (fK(n)), (1)

where K is an integer constant, g(·), fi(·), i = 1, . . . , K are arbitrary non-recurrent functions,
F (·) is an arbitrary function on K + 1 variables, and fi(n) < n for i = 1, . . . , K. Every
recurrence relation also has a limiting case, which is often implicitly assumed. Whenever not
specified, we will assume that T (1) = O(1) is the limiting case. If T models time or space
complexities of some algorithm, then this is not an unreasonable assumption to make.

1.1 The substitution method

Given a recurrence relation, the substitution method has two steps: the first step is to guess
a solution and the second step is to verify it. The first step is admittedly hard. However, it
does get easier as you solve more and more recurrences. The second step involves, verifying

1



the solution using induction. In the verification process, we assume that the guess is correct
for values smaller than n. In other words, we assume that the guess is applicable to the right-
hand side of the recurrence relation. However, for the verification process to be complete,
we need to show that the left-hand side of the recurrence relation is indeed smaller than the
right-hand side after applying the appropriate substitutions. It is worth pointing out that
the verification process is basically an induction proof.

In class, we discussed the solution of the following recurrence relation:

T (n) = 2T (n/2) + n. (2)

Exercise 3.1 Use the substitution method to show that T (n) = O(n) is not a solution for
Eq. (2). Also, show that T (n) = O(n2) is a valid solution, but leaves a lot of “slack”. Finally,
show that T (n) = O(n log n) is a valid solution and leaves no slack.

Exercise 3.2 If the recurrence is changed to the following:

T (n) = 2T (n/2) + 3n,

how will your analysis change? How do the constants change?

Suggestion 3.1 I recommend that you read the sections on Subtleties, Avoiding pitfalls,
and Changing variable on pages 65-66 to see some good examples

1.2 The recursion-tree method

The idea is to recursively expand out all the recurrent terms and then to add them all up.
To facilitate the expansion of the recurrent terms, the recursion-tree method suggests that
a tree of these terms be used to represent all the terms. Assume that a recurrence relation
is provided to you as shown in Eq.(1). To start with you the initialize the tree to a single
node labeled T (n). Since T (n) has a recurrence relation describing it, we will refer to it
as a recurrent node. Then replace this recurrent node by a subtree whose non-recurrent
root node is labeled with the non-recurrent function g(n) and whose K recurrent children
are labeled T (f1(n)), T (f2(n), . . . , T (fK(n) respectively. At any given iteration, the method
replaces a recurrent node labeled T (f(n) with a non-recurrent root node labeled with the
function g(f(n)) and whose K children are labeled T (f1(f(n))), T (f2(f(n)), . . . , T (fK(f(n))
respectively. Note that the number of nodes in the tree and the number of levels in the tree
are typically functions of n.

Once the tree is fully expanded out, it often provides us with creative and alternative
ways to sum up all the terms. For example, one could add up the terms level by level and
try to see a trend in these sums. A recursion tree for Eq. (2) will have the terms on each
level add up to the same value n. Combining that with the fact that the recursion tree for
Eq. (2) has O(log n) levels, tells us that its solution is exactly n log n.

2



1.3 The master theorem method

This is the easiest of the three methods to solve recurrence relations. The master theorem
gives you solutions for special cases of solving recurrence relations. It considers recurrence
relations of the form

T (n) = aT (n/b) + f(n). (3)

It provides solutions for the following three cases:

1. if f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n);

2. if f(n) = O((nlogb a−ε), for some ε > 0, then T (n) = Θ(nlogb a)

3. if f(n) = Ω(nlogb a+ε). for some ε > 0, then T (n) = Θ(f(n)).

Note that the master theorem is only applicable if the recurrence relation has the form show
in Eq. (3).

2 Summary

The recursion-tree method requires one to compute summations, which can be quite com-
plicated. In such cases, a crude computation using a recursion-tree method followed by an
application of the substitution method can help to quickly zero in the correct function and
even nail down the constants involved. The master theorem is only applicable if the recur-
rence relation has a specific form that arises when analyzing divide-and-conquer algorithms.
In practice, it is suggested that you try to use the master theorem first. If it is not applicable
then try the recursion-tree method. If you need to nail down the precise constants, then the
substitution method is the best method available to you.

3


