COT 5407: Introduction to Algorithms

Giri Narasimhan
 ECS 254; Phone: x3748
 giri@cis.fiu.edu

www.cis.fiu.edu/~giri/teach/5407F07.html

Why should I care about Algorithms?

"I can't find an efficient algorithm, I guess I'm just too dumb."

More questions you should ask

- Who should know about Algorithms?
- Is there a future in this field?
- Would I ever need it if I want to be a software engineer or work with databases?

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Cartoon from Intractability by Garey and Johnson

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."
Cartoon from Intractability by Garey and Johnson

Evaluation

- Exams (2)
- Homework Assignments
- Semester Project
- Class Participation

50\%
35%
10\%
5\%

History of Algorithms

The great thinkers of our field:

- Euclid, 300 BC
- Bhaskara, $6^{\text {th }}$ century
- Al Khwarizmi, 9th century
- Fibonacci, $13^{\text {th }}$ century
- Babbage, 19th century
- Turing, $20^{\text {th }}$ century
- von Neumann, Knuth, Karp, Tarjan, ...

Search

- You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?
- Use binary search; Number of guesses $=\log _{2}(B-A)$
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.
- Algorithm:
- figure out B (by using Doubling Search)
- perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B, we have: $\log _{2}(B / 2)<\log _{2} X$,
- Number of guesses < $2 \log _{2} X-1$

Polynomials

- Given a polynomial
$-p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$ compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?
- Simple solution:
- Number of additions = n
- Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Improved solution using Horner's rule:
- $\left.p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) \ldots\right)\right)$
- Number of additions = n
- Number of multiplications $=n$

