Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n \log n)$
$a=b$	
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n)$
$a<b$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=O(n)$
$f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
$f(n)=O\left(n^{\log _{b} a}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$
$f(n)=\Theta(f(n))$	
$a f(n / b) \leq c f(n)$	

Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_{0} shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n)=\Theta(g(n))$ if there exist positive constants n_{0}, c_{1}, and c_{2} such that to the right of n_{0}, the value of $f(n)$ always lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive. (b) O notation gives an upper bound for a function to within a constant factor. We write $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $\operatorname{cg}(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n)=\Omega(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c g(n)$.

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works
Example

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#1) $\quad T(n)=O(n)$

Need
Assume
Thus
$T(n)<=c n$
$T(n / 2)<=c n / 2$ Inductive hypothesis
$T(n)<=2 c n / 2+n=(c+1) n$
Our guess was wrong!!

Solving Recurrences by Substitution: 2

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#2) $T(n)=O\left(n^{2}\right)$

Need
Assume
Thus
$T(n)<=c n^{2}$
$T(n / 2)<=\mathrm{cn}^{2} / 4$ Inductive hypothesis
$T(n)<=2 n^{2} / 4+n=\mathrm{cn}^{2} / 2+n$
Works for all n as long as $c>=2$!!
But there is a lot of "slack"

Solving Recurrences by Substitution: 3

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#3) $T(n)=O(n \log n)$
Need $\quad T(n)<=c n l o g n \quad$ for some constant $c>0$
Assume $\quad T(n / 2)<=c(n / 2)(\log (n / 2)) \quad$ Inductive hypothesis
Thus
$T(n)<=2 c(n / 2)(\log (n / 2))+n$
<= cnlogn $-c n+n<=c n \log n$
Works for all n as long as $c>=1$!!
This is the correct guess. WHY?
Show

$T(n)>=c^{\prime} n \log n$

for some constant $c^{\prime}>0$

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
- Write down the recurrence as a tree with recursive calls as the children
- Expand the children
- Add up each level
- Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)
(b)
(c)

Figure 4.1 The construction of a recursion tree for the recurrence $T(n)=3 T(n / 4)+\mathrm{cn}^{2}$. Part (a) shows T (n), which is progressively expanded in (b)-(d) to form the recursion tree. The

Figure 4．2 A recursion tree for the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c n$ ．

Solving Recurrences using Master Theorem

Master Theorem:

Let $a, b>=1$ be constants, let $f(n)$ be a function, and let

$$
T(n)=a T(n / b)+f(n)
$$

1. If $f(n)=O\left(n^{\log _{b} a-e}\right)$ for some constant $e>0$, then

$$
T(n)=\text { Thet } a\left(n^{\log _{b} a}\right)
$$

2. If $f(n)=$ Thet $a\left(n^{\log _{b} a}\right)$, then

$$
T(n)=\operatorname{Theta}\left(n^{\log _{b} a} \log n\right)
$$

3. If $f(n)=$ Omega $\left(n^{\log _{b} a+e}\right)$ for some constant $e>0$, then $T(n)=\operatorname{Theta}(f(n))$
