Solving Recurrence Relations

Page 62, [CLR]

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n)$; $a = b$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n)$; $a < b$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = O(n^{\log_b a - \epsilon})$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = O(n^{\log_b a})$</td>
<td>$T(n) = \Theta(n^{\log_b a \log n})$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = \Theta(f(n))$; $af(n/b) \leq cf(n)$</td>
<td>$T(n) = \Omega(n^{\log_b a \log n})$</td>
</tr>
</tbody>
</table>
Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0, c_1, and c_2 such that to the right of n_0, the value of $f(n)$ always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write $f(n) = O(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or below $cg(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0, the value of $f(n)$ always lies on or above $cg(n)$.
Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

\[T(n) = 2T(n/2) + n \]

Guess (#1)\) \(T(n) = O(n) \)

Need\) \(T(n) \leq cn \) for some constant \(c > 0 \)

Assume\) \(T(n/2) \leq cn/2 \) Inductive hypothesis

Thus\) \(T(n) \leq 2cn/2 + n = (c+1)n \)

Our guess was wrong!!
Solving Recurrences by Substitution: 2

\[T(n) = 2T(n/2) + n \]

Guess (\#2) \quad T(n) = O(n^2)

Need \quad T(n) \leq cn^2 \quad \text{for some constant } c > 0

Assume \quad T(n/2) \leq cn^2/4 \quad \text{Inductive hypothesis}

Thus \quad T(n) \leq 2cn^2/4 + n = cn^2/2 + n

Works for all \(n \) as long as \(c \geq 2 \) !!

But there is a lot of “slack”
T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need T(n) <= cnlogn for some constant c>0

Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis

Thus T(n) <= 2 c(n/2)(log(n/2)) + n

<= cnlogn -cn + n <= cnlogn

Works for all n as long as c>=1 !!

This is the correct guess. WHY?

Show T(n) >= c’nlogn for some constant c’>0
Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method
Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$.
Part (a) shows $T(n)$, which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).
Figure 4.2 A recursion tree for the recurrence $T(n) = T(n/3) + T(2n/3) + cn$.

Total: $O(n \log n)$
Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \geq 1$ be constants, let $f(n)$ be a function, and let

$$T(n) = aT(n/b) + f(n)$$

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then
 $$T(n) = \Theta(n^{\log_b a})$$

2. If $f(n) = \Theta(n^{\log_b a})$, then
 $$T(n) = \Theta(n^{\log_b a \log n})$$

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, then
 $$T(n) = \Theta(f(n))$$