Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n) T(n) = 0O(nlogn)

T(n) =al'(n/b) + O(n); T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n); | T(n) = ©(nl°%log n)
f(n) = O(n'%)

T(n) = aT(n/b) + f(n); | T(n) = Q2(nP%310g n)
f(n) = ©(f(n))
af (n/b) < ef(n)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

......... !r I’i - e ”

£(n) = ©(z(n)) " fn) = 0(e(n)) ") = Q)
(a) (b) ©

Figure 3.1 Graphic examples of the ©, O, and £ notations. In each part, the value of npy shown is
the minimum possible value; any greater value would also work. (a) ®-notation bounds a function to
within constant factors, We write f(n) = ®(g(n)) if there exist positive constants ng, ¢;, and 7 such
that to the right of ng, the value of f(n) always lies between ¢jg(rn) and c2¢(n) inclusive. (b) O-

if there are positive constants ny and ¢ such that to the right of np, the value of f(n) always lies on
or below cg(n). (¢) S-notation gives a lower bound for a function to within a constant factor. We
write f(n) = £2(g(n)) if there are positive constants ng and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n).

9/4/07 COT 5407 2

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2¢cn/2 + n = (c+1) n

Our guess was wrong!!

9/4/07 COT 5407 3

Solving Recurrences by Substitution:

T(n) = 2T(n/2) + n

Guess (#2) T(n) = O(n3)

Need T(n) <= cn? for some constant ¢>0
Assume T(n/2) <= cn?/4 Inductive hypothesis
Thus T(n) <= 2cn2/4 + n = cn?/2+ n

Works for all n as long as ¢c>=2 |l
But there is a lot of "slack”

9/4/07 COT 5407

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need
Assume
Thus

Show

9/4/07

T(n) <= cnlogn for some constant ¢>0
T(n/2) <= c¢(n/2)(log(n/2)) Inductive hypothesis
T(n) <= 2 c¢(n/2)(log(n/2)) + n

<= chlogn -cn + n <= cnlogn
Works for all n as long as ¢c>=1 |l
This is the correct guess. WHY?
T(n) >= c'nlogn for some constant c>0

COT 5407 3)

Solving Recurrences: Recursion-tree method

Substitution method fails when a good guess is not available

Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the
children

Expand the children
Add up each level
Sum up the levels

Useful for analyzing divide-and-conquer algorithms

Also useful for generating good guesses to be used by
substitution method

9/4/07 COT 5407 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2

T(n) et Cr
TH T TiH e(3) c($)? e ()

TR TR TR Ty T T TR TE) T

......

() [[13] (ch
A H#H#,Hf"#fﬂ,,ef”"'c"i‘Hmﬁh““Haxhﬁhhhhhh‘ - ent
cl3 ¥ E}z :‘{%’JJ ----------- s T:Irn:
f/iﬁ f/tH' c (i)’ B el eyl o(E) o(f c(f) weme () en?

Y T T) T TO) TOO T) TC) T TAY TAY <=e T(1) TO) TAH) i @iy
———— —

——

id Total: Hn*)

Figure 4.1 The construction of a recursion tree for the recummence Tin) = 3T (n/d) + cn?,
9/4/07 Part {a} shows T {n), which is progressively expanded in (B)=(d) 1o form the recursion tree. The
fully exparded tree in part () hies height logy # (it has logg 4 1 levels),

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/\

L C — COCTTTTETT YT ee (TR
ogs/ / \ / \
L2 2 4
c@ e c®) () i
r b P]] 1 I L
f‘ II'I JJ 11 I' 'I'I I'|I '|'|
f 1 ' \ i 1 i 1

CH

ch

Total: O(nlgn)

Figure 4.2 A recursion tree for the recurrence 7 (n) = T(n/3) + T (2n/3) + cn.

M AV LUl o4Vl

o

Solving Recurrences using Master Theorem

Master Theorem:
Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(n'9, 2¢) for some constant e>0, then
T(n) = Theta(n'os,°)

2. If f(n) = Theta(nles 2), then
T(n) = Theta(nlos,2 log n)

3. If f(n) = Omega(nlos,2+e) for some constant e>0, then
T(n) = Theta(f(n))

9/4/07 COT 5407 9

