Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

1

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or allow cg(n).

COT 5407

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

	T(n) = 2T(n/2)	+ n
Guess (#1)	T(n) = O(n)	
Need	T(n) <= cn	for some constant c>0
Assume	T(n/2) <= cn/2	Inductive hypothesis
Thus	T(n) <= 2cn/2 + n =	(c+1) n
Our guess was wrong!!		
9/4/07	COT	5407

Solving Recurrences by Substitution: 2

$$T(n) = 2T(n/2) + n$$

Guess (#2) $T(n) = O(n^2)$

Need $T(n) <= cn^2$ for some constant c>0

Assume $T(n/2) \ll cn^2/4$ Inductive hypothesis

Thus

T(n) <= 2cn²/4 + n = cn²/2+ n

Works for all n as long as c>=2 !!

But there is a lot of "slack"

Solving Recurrences by Substitution: 3

	T(n) = 2T(n/2)) + n	
Guess (<mark>#3</mark>)	T(n) = O(nlogn)		
Need	T(n) <= cnlogn	for some constant c>0	
Assume	T(n/2) <= c(n/2)(log(n/2))) Inductive hypothesis	
Thus	T(n) <= 2 c(n/2)(log(n/2)) + n	
	<= cnlogn -cn + n <= c	cnlogn	
	Works for all n as long as c>=1 !!		
	This is the correct gue	ss. WHY?	
Show	T(n) >= c'nlogn	for some constant c'>0	

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

9/4/07

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_{b} a e})$ for some constant e>0, then T(n) = Theta($n^{\log_{b} a}$)
- 2. If $f(n) = Theta(n^{\log_{b} a})$, then T(n) = Theta($n^{\log_{b} a} \log n$)
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then T(n) = Theta(f(n))