
9/4/07 COT 5407 1

9/4/07 COT 5407 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/4/07 COT 5407 3

Solving Recurrences by Substitution

• Guess the form of the solution

• (Using mathematical induction) find the constants and show

that the solution works

Example

T(n) = 2T(n/2) + n

Guess (#1) T(n) = O(n)

Need T(n) <= cn for some constant c>0

Assume T(n/2) <= cn/2 Inductive hypothesis

Thus T(n) <= 2cn/2 + n = (c+1) n

Our guess was wrong!!

9/4/07 COT 5407 4

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)

Need T(n) <= cn2 for some constant c>0

Assume T(n/2) <= cn2/4 Inductive hypothesis

Thus T(n) <= 2cn2/4 + n = cn2/2+ n

Works for all n as long as c>=2 !!

But there is a lot of “slack”

9/4/07 COT 5407 5

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)

Need T(n) <= cnlogn for some constant c>0

Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis

Thus T(n) <= 2 c(n/2)(log(n/2)) + n

 <= cnlogn -cn + n <= cnlogn

Works for all n as long as c>=1 !!

This is the correct guess. WHY?

Show T(n) >= c’nlogn for some constant c’>0

9/4/07 COT 5407 6

Solving Recurrences: Recursion-tree method

• Substitution method fails when a good guess is not available

• Recursion-tree method works in those cases

– Write down the recurrence as a tree with recursive calls as the

children

– Expand the children

– Add up each level

– Sum up the levels

• Useful for analyzing divide-and-conquer algorithms

• Also useful for generating good guesses to be used by

substitution method

9/4/07 COT 5407 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/4/07 COT 5407 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/4/07 COT 5407 9

Solving Recurrences using Master Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

T(n) = Theta(nlog
b
a)

2. If f(n) = Theta(nlog
b
a), then

T(n) = Theta(nlog
b
a log n)

3. If f(n) = Omega(nlog
b
a+e) for some constant e>0, then

T(n) = Theta(f(n))

