Sorting Algorithms

• Number of Comparisons
• Number of Data Movements
• Additional Space Requirements
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket & Radix Sort
- Counting Sort
Visualizing Algorithms 1
Visualizing Algorithms 2

Position

Value

Unsorted

Sorted
Visualizing Comparisons 3
Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/
Comparing $O(n^2)$ Sorting Algorithms

- InsertionSort and SelectionSort (and ShakerSort) are roughly twice as fast as BubbleSort for small files.
- InsertionSort is the best for very small files.
- $O(n^2)$ sorting algorithms are **NOT** useful for large random files.
- If *comparisons* are very expensive, then among the $O(n^2)$ sorting algorithms, insertion sort is best.
- If *data movements* are very expensive, then among the $O(n^2)$ sorting algorithms, ?? is best.
Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.
Figure 2.3 The operation of lines 10–17 in the call `MERGE(A, 9, 12, 16)`, when the subarray \(A[9..16] \) contains the sequence \((2, 4, 5, 7, 1, 2, 3, 6) \). After copying and inserting sentinels, the array \(L \) contains \((2, 4, 5, 7, \infty) \), and the array \(R \) contains \((1, 2, 3, 6, \infty) \). Lightly shaded positions in \(A \) contain their final values, and lightly shaded positions in \(L \) and \(R \) contain values that have yet to be copied back into \(A \). Taken together, the lightly shaded positions always comprise the values originally in \(A[9..16] \), along with the two sentinels. Heavily shaded positions in \(A \) contain values that will be copied over, and heavily shaded positions in \(L \) and \(R \) contain values that have already been copied back into \(A \). (a)–(h) The arrays \(A, L, \) and \(R, \) and their respective indices \(k, i, \) and \(j \) prior to each iteration of the loop of lines 12–17. (i) The arrays and indices at termination. At this point, the subarray in \(A[9..16] \) is sorted, and the two sentinels in \(L \) and \(R \) are the only two elements in these arrays that have not been copied into \(A \).
Assumption: Array A is sorted from positions p to q and also from positions q+1 to r.

```
MERGE(A, p, q, r)
 1  n_1 ← q − p + 1
 2  n_2 ← r − q
 3  create arrays L[1..n_1 + 1] and R[1..n_2 + 1]
 4  for i ← 1 to n_1
 5      do L[i] ← A[p + i − 1]
 6  for j ← 1 to n_2
 7      do R[j] ← A[q + j]
 8  L[n_1 + 1] ← ∞
 9  R[n_2 + 1] ← ∞
10  i ← 1
11  j ← 1
12  for k ← p to r
13      do if L[i] ≤ R[j]
14         then A[k] ← L[i]
15            i ← i + 1
16         else A[k] ← R[j]
17            j ← j + 1
```
\textbf{MERGE-SORT}(A, p, r)

1 \textbf{if} \ p < r

2 \quad \textbf{then} \ q \leftarrow \lfloor (p + r)/2 \rfloor

3 \quad \textbf{MERGE-SORT}(A, p, q)

4 \quad \textbf{MERGE-SORT}(A, q + 1, r)

5 \quad \textbf{MERGE}(A, p, q, r)
Figure 2.5 The construction of a recursion tree for the recurrence $T(n) = 2T(n/2) + cn$. Part (a) shows $T(n)$, which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.
Merge: Algorithm Invariants

• Merge (many lists)
 - ??
Animation Demis

http://cg.scs.carleton.ca/~morin/misc/sortalg/
Figure 8.10 Quicksort
Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

2 1 4 5 0 3 6 8 7 9
QuickSort

\[
\text{QuickSort}(\text{array } A, \text{ int } p, \text{ int } r)
\]

1. If \((p < r)\)
2. Then \(q \leftarrow \text{Partition}(A, p, r)\)
3. QuickSort\((A, p, q - 1)\)
4. QuickSort\((A, q + 1, r)\)

To sort array call \textbf{QuickSort}\((A, 1, \text{length}[A])\).

Partition

\[
\text{Partition}(\text{array } A, \text{ int } p, \text{ int } r)
\]

1. \(x \leftarrow A[r]\) \quad \triangleright \text{Choose pivot}
2. \(i \leftarrow p - 1\)
3. For \(j \leftarrow p \text{ to } r - 1\)
4. Do if \((A[j] \leq x)\)
5. Then \(i \leftarrow i + 1\)
7. Exchange \(A[i + 1] \leftrightarrow A[r]\)
8. Return \(i + 1\)

Page 146, CLRS
Problems to think about!

• What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?

• How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?