Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements

Figure 2.4 The operation of merge sort on the array $A=\langle 5,2,4,7,1,3,2,6\rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$\operatorname{Merge}(A, p, q, r)$

```
\(1 \quad n_{1} \leftarrow q-p+1\)
\(2 n_{2} \leftarrow r-q\)
3 create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
4 for \(i \leftarrow 1\) to \(n_{1}\)
\(5 \quad\) do \(L[i] \leftarrow A[p+i-1]\)
```

6 for $j \leftarrow 1$ to n_{2}
$7 \quad$ do $R[j] \leftarrow A[q+j]$
$L\left[n_{1}+1\right] \leftarrow \infty$
$9 \quad R\left[n_{2}+1\right] \leftarrow \infty$
$10 \quad i \leftarrow 1$
$11 j \leftarrow 1$

Assumption: Array A is sorted from positions p to q and also from positions $q+1$ to r.

12 for $k \leftarrow p$ to r
13 do if $L[i] \leq R[j]$
$14 \quad$ then $A[k] \leftarrow L[i]$
O(n)
15
16
17
$i \leftarrow i+1$
else $A[k] \leftarrow R[j]$
$j \leftarrow j+1$

Merge-Sort (A, p, r)

1 if $p<r$

$2 \quad$ then $q \leftarrow\lfloor(p+r) / 2\rfloor$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.5 The construction of a recursion tree for the recurrence $T(n)=2 T(n / 2)+c n$. Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n+1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of $c n$. The total cost, therefore, is $c n \lg n+c n$, which is $\Theta(n \lg n)$

Figure 8.10 Quicksort

Last step of Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

2	1	4	5	0	3	9	8	7	6

Figure B Result after Partitioning

2	1	4	5	0	3	6	8	7	9

```
QuIckSort(array A, int p, int r)
1 if ( }p<r\mathrm{ )
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort ( }A,q+1,r
To sort array call QuickSort \((A, 1\), length \([A])\).
Partition(array \(A\), int \(p\), int \(r\) )
```

$1 \quad x \leftarrow A[r]$
\triangleright Choose pivot

```
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
\(4 \quad\) do if \((A[j] \leq x)\) then \(i \leftarrow i+1\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)

\section*{Problems with QuickSort}
- Bad pivot choices can lead to worst-case behavior of \(O\left(n^{2}\right)\)
- High cost of recursive calls
- Unstable sorting algorithm
- Lots of potential data movements.

\section*{Suggestions for improvement}
- Improved choice of pivot to improve worst-case time complexity
- Randomly choose pivot
- Pick median of three choices (deterministic or random)
- Huge cost incurred by recursive calls especially when the sublists get smaller and smaller
- When the sublist becomes smaller than some threshold, call InsertionSort or some other non-recursive sorting algorithm

\section*{Questions to ask}
- Worst-case versus average-case behavior of the sorting algorithms
- Why is QuickSort fast in practice as opposed to others?
- How can we improve on it?
- How is it different from the divide-and-conquer algorithm, MergeSort?

\section*{Sorting Algorithms}
- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket \& Radix Sort
- Counting Sort

\section*{Problems to think about!}
- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?```

