Storing binary trees as arrays

20	7	38	4	16	37	43
----	---	----	---	----	----	----

Heaps (Max-Heap)

43	16	38	4	7	37	20
----	----	----	---	---	----	----

43	16	38	4	7	37	20	2	3	6	1	30
----	----	----	---	---	----	----	---	---	---	---	----

HEAP represents a binary tree stored as an array such that:

- Tree is filled on all levels except last
- Last level is filled from left to right
- Left & right child of i are in locations 2i and 2i+1
- <u>HEAP PROPERTY</u>:
- ⁹ Parent value is at least as large as child's value ²

HeapSort

- First convert array into a heap (BUILD-MAX-HEAP, p133)
- Then convert heap into sorted array (HEAPSORT, p136)

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

HeapSort: Part 1

 $\textbf{Max-Heapify}(array \; A, int \; i)$

- \triangleright Assume subtree rooted at *i* is not a heap;
- \triangleright but subtrees rooted at children of *i* are heaps
- 1 $l \leftarrow \text{Left}[i]$

2
$$r \leftarrow \text{Right}[i]$$

3 if
$$((l \leq heap-size[A]) and (A[l] > A[i]))$$

- 4 then $largest \leftarrow l$
- 5 else $largest \leftarrow i$
- $6 \quad \text{if } ((r \leq heap\text{-}size[A]) \ and \ (A[r] > A[largest])) \\$
- 7 **then** $largest \leftarrow r$
- 8 **if** $(largest \neq i)$
- 9 **then** exchange $A[i] \leftrightarrow A[largest]$
- 10 Max-Heapify(A, largest)

O(height of node in location i) = O(log(size of subtree))

p130

HeapSort: Part 2

Build-Max-Heap $(array \ A)$

- $1 \quad heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

HeapSort: Part 2

Build-Max-Heap($array \; A)$

- $1 \quad heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

 $\operatorname{HeapSort}(array \ A)$

1 BUILD-MAX-HEAP(A) 2 **for** $i \leftarrow length[A]$ **downto** 2 3 **do** exchange $A[1] \leftrightarrow A[i]$ 4 $heap-size[A] \leftarrow heap-size[A] - 1$ O(log n) 5 MAX-HEAPIFY(A, 1) O(log n) For the HeapSort analysis, we need to compute:

Build-Max-Heap Analysis

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$

We know from the formula for geometric series that

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Differentiating both sides, we get

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

Multiplying both sides by x we get

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Now replace x = 1/2 to show that

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \frac{1}{2}$$

9/20/07

COT 5407