Announcements

- MidTerm Exam 1: October 16 in class
- MidTerm Exam 2: Last day of class
- Final: NO FINAL EXAM

Data Structure Evolution

- Standard operations on data structures
 - Search
 - Insert
 - Delete
- Linear Lists
 - Implementation: Arrays (Unsorted and Sorted)
- Dynamic Linear Lists
 - Implementation: Linked Lists
- Dynamic Trees
 - Implementation: Binary Search Trees

BST: Search

TREESEARCH(node x, key k)

Time Complexity: O(h) h = height of binary search tree <u>Not $O(\log n)$ — Why?</u>

BST: Insert

BST: Delete

	Time Complexity: O(b)
$T_{DDD}D_{DD}D_{DD}(t_{max}, T_{mada}, x)$	
I REEDELETE(<i>tree</i> I , noae z)	h = height of binary search tree
\triangleright Delete node z from tree T	
1 if $((left[z] = NIL) \text{ or } (right[z] = NIL))$	
2 then $y \leftarrow z$	Set y as the node to be deleted
3 else $y \leftarrow \text{TREE-SUCCESSOR}(z)$	Set y as the node to be deleted.
4 if $(left[y] \neq NIL)$	It has at most one child, and let
5 then $x \leftarrow left[y]$	that child be node X
6 else $x \leftarrow right[y]$	
7 if $(x \neq \text{NIL})$	If y has one child, then y is deleted
8 then $p[x] \leftarrow p[y]$	and the parent pointer of \mathbf{x} is fixed.
9 if $(p[y] = \text{NIL})$	
10 then $root[T] \leftarrow x$	
11 else if $(y = left[p[y]])$	The child pointers of the parent of y
12 then $left[p[y]] \leftarrow x$	in fixed
13 else $right[p[y]] \leftarrow x$	
14 if $(y \neq z)$	
15 then $key[z] \leftarrow key[y]$	The contents of node 7 are fixed
16 cop y 's satellite data into z	
17 return y	5

Animations

· BST:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html

Rotations:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html

RB-Trees:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html