## Announcements

- MidTerm Exam 1: October 16 in class
- MidTerm Exam 2: Last day of class
- Final: NO FINAL EXAM


## BST: Insert

| TreEInSERT(tree $T$, node z) |  |
| :---: | :---: |
| $1 y \leftarrow \mathrm{NIL}$ |  |
| $x \leftarrow \operatorname{root}[T]$ |  |
| 3 | while ( $x \neq$ NIL) |
| 4 | do $y \leftarrow x$ |
| 5 | if $(k e y[z]<k e y[x])$ |
| 6 | then $x \leftarrow$ left $[x]$ |
| 7 | else $x \leftarrow \operatorname{right}[x]$ |
| 8 | $p[z] \leftarrow y$ |
| 9 | if $(y=$ NIL) |
| 10 | then $\operatorname{root}[T] \leftarrow z$ |
| 11 | else if (key[z]<key[y]) |
| 12 | then left $[y] \leftarrow z$ |
| 13 | else $\operatorname{right}[y] \leftarrow z$ |

Time Complexity: O(h) $h=$ height of binary search tree

Search for x in T

Insert x as leaf in T

## BST: Delete



## Animations

- BST:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html
- Rotations:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html
- RB-Trees:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html


## Red-Black (RB) Trees

- Every node in a red-black tree is colored either red or black.
- The root is always black.
- Every path on the tree, from the root down to the leaf, has the same number of black nodes.
- No red node has a red child.
- Every NIL pointer points to a special node called NIL[T] and is colored black.
- Every RB-Tree with $n$ nodes has black height at most logn
- Every RB-Tree with $n$ nodes has height at most 2 logn


## Red-Black Tree Insert

```
RB-Insert (T,z) // pg 280
    // Insert node z in tree T
    y = NIL[T]
    x = root[T]
    while ( }x\not=\mathrm{ NIL[T]) do
        y=x
        if (key[z] < key[x])
            x left[x]
            x = right[x]
    p[z] = y
    if (y == NIL[T])
        root[T]= z
    else if (key[z]<key[y])
        left[y] = z
    else right[y]= z
    // new stuff
    left[z] = NIL[T]
    right[z] = NIL[T]
    color[z] = RED
    RB-Insert-Fixup (T,z)
```

```
RB-Insert-Fixup (T,z)
    while (color[p[z]] == RED) do
        if (p[z] = left[p[p[z]]]) then
            y = right[p[p[z]]]
            if (color[y] == RED) then // C-1
            color[p[z]] = BLACK
            color[y] = BLACK
            z=p[p[z]]
            color[z] = RED
            else if (z == right[p[z]]) then // C-2
                                    z=p[z]
                                    LeftRotate(T,z)
                    color[p[z]]= BLACK // C-3
                    color[p[p[z]]] = RED
                            RightRotate(T,p[p[z]])
        else
            // Symmetric code: "right" ↔ "left"
            ...
    color[root[T]] = BLACK
```


## Rotations

## LeftRotate (T, x) //pg 278

// right child of $x$ becomes $x$ 's parent.
// Subtrees need to be readjusted.
$y=\operatorname{right}[x]$
$\operatorname{right}[x]=$ left $[y] \quad / /$ y's left subtree becomes $x$ 's right
$p[$ left $[y]]=x$
$p[y]=p[x]$
if $(p[x]==N I L[T])$ then $\operatorname{root}[T]=y$
else if $(x==\operatorname{left}[p[x]])$ then
left $[p[x]]=y$
else $\operatorname{right}[p[x]]=y$
left[y] = $x$
$p[x]=y$

