Dynamic Programming vs. Divide-&-conquer

- Divide-&-conquer works best when all subproblems are independent. So, pick partition that makes algorithm most efficient & simply combine solutions to solve entire problem.
- Dynamic programming is needed when subproblems are dependent; we don’t know where to partition the problem.

For example, let $S_1 = \{\text{ALPHABET}\}$, and $S_2 = \{\text{HABITAT}\}$.
Consider the subproblem with $S_1' = \{\text{ALPH}\}$, $S_2' = \{\text{HABI}\}$.
Then, $\text{LCS}(S_1', S_2') + \text{LCS}(S_1 - S_1', S_2 - S_2') \neq \text{LCS}(S_1, S_2)$
- Divide-&-conquer is best suited for the case when no “overlapping subproblems” are encountered.
- In dynamic programming algorithms, we typically solve each subproblem only once and store their solutions. But this is at the cost of space.
Dynamic programming vs Greedy

1. Dynamic Programming solves the sub-problems bottom up. The problem can't be solved until we find all solutions of sub-problems. The solution comes up when the whole problem appears.

 Greedy solves the sub-problems from top down. We first need to find the greedy choice for a problem, then reduce the problem to a smaller one. The solution is obtained when the whole problem disappears.

2. Dynamic Programming has to try every possibility before solving the problem. It is much more expensive than greedy. However, there are some problems that greedy cannot solve while dynamic programming can. Therefore, we first try greedy algorithm. If it fails then try dynamic programming.
Fractional Knapsack Problem

• Burglar’s choices:
 Items: x_1, x_2, \ldots, x_n
 Value: v_1, v_2, \ldots, v_n
 Max Quantity: q_1, q_2, \ldots, q_n
 Weight per unit quantity: w_1, w_2, \ldots, w_n
 Getaway Truck has a weight limit of B.
 Burglar can take “fractional” amount of any item.
 How can burglar maximize value of the loot?

• Greedy Algorithm works!
 Pick the maximum possible quantity of highest value per weight item.
 Continue until weight limit of truck is reached.
0-1 Knapsack Problem

• Burglar’s choices:
 Items: $x_1, x_2, ..., x_n$
 Value: $v_1, v_2, ..., v_n$
 Weight: $w_1, w_2, ..., w_n$

Getaway Truck has a weight limit of B.
Burglar cannot take “fractional” amount of item.
How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?
• Need dynamic programming!
0-1 Knapsack Problem

- **Subproblems?**
 - \(V[j, L] = \text{Optimal solution for knapsack problem assuming a truck of weight limit } L \text{ and choice of items from set } \{1, 2, \ldots, j\} \).
 - \(V[n, B] = \text{Optimal solution for original problem} \)
 - \(V[1, L] = \text{easy to compute for all values of } L \).

- **Table of solutions?**
 - \(V[1..n, 1..B] \)

- **Ordering of subproblems?**
 - Row-wise

- **Recurrence Relation? [Either } x_j \text{ included or not] }**
 - \(V[j, L] = \max \{ V[j-1, L], \)
 - \(v_j + V[j-1, L-w_j] \}\)
1-d, 2-d, 3-d Dynamic Programming

- Classification based on the dimension of the table used to store solutions to subproblems.

 - 1-dimensional DP
 - Activity Problem

 - 2-dimensional DP
 - LCS Problem
 - 0-1 Knapsack Problem
 - Matrix-chain multiplication

 - 3-dimensional DP
 - All-pairs shortest paths problem
Graphs

- Graph $G(V,E)$
- V Vertices or Nodes
- E Edges or Links: pairs of vertices
- D Directed vs. Undirected edges
- Weighted vs Unweighted
- Graphs can be augmented to store extra info (e.g., city population, oil flow capacity, etc.)
- Paths and Cycles
- Subgraphs $G'(V',E')$, where V' is a subset of V and E' is a subset of E
- Trees and Spanning trees
Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.
Graph Traversal

- Visit every vertex and every edge.
- Traversal has to be systematic so that no vertex or edge is missed.
- Just as tree traversals can be modified to solve several tree-related problems, graph traversals can be modified to solve several problems.
Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed (otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or forward edges. Vertices are timestamped by discovery time/finishing time.
DFS(G)
1. For each vertex \(u \in V[G] \) do
2. \(\text{color}[u] \leftarrow \text{WHITE} \)
3. \(\pi[u] \leftarrow \text{NIL} \)
4. \(\text{Time} \leftarrow 0 \)
5. For each vertex \(u \in V[G] \) do
6. if \(\text{color}[u] = \text{WHITE} \) then
7. \(\text{DFS-VISIT}(u) \)

Depth

First

Search

DFS-VISIT(u)
1. \(\text{VisitVertex}(u) \)
2. \(\text{Color}[u] \leftarrow \text{GRAY} \)
3. \(\text{Time} \leftarrow \text{Time} + 1 \)
4. \(d[u] \leftarrow \text{Time} \)
5. for each \(v \in \text{Adj}[u] \) do
6. \(\text{VisitEdge}(u,v) \)
7. if \((v \neq \pi[u]) \) then
8. if \((\text{color}[v] = \text{WHITE}) \) then
9. \(\pi[v] \leftarrow u \)
10. \(\text{DFS-VISIT}(v) \)
11. \(\text{color}[u] \leftarrow \text{BLACK} \)
12. \(F[u] \leftarrow \text{Time} \leftarrow \text{Time} + 1 \)