Fall 2007: COT 5407 INTRO. TO ALGORITHMS

[PROGRAMMING ASSIGNMENT 1; DUE DEC 4 AT START OF CLASS]

Reminder: ADD A SIGNED STATEMENT THAT YOU HAVE ADHERED TO THE COLLABORATION
POLICY FOR THIS CLASS AND THAT WHAT YOU ARE PRESENTING IS YOUR OWN WORK.

Problem Description

Your program should read in a list of n numbers (from a file Data.txt) and store it in an array A.
Next it should interactively prompt a user to type in a number B, and output YES or NO
depending on whether or not there are two numbers in A that add up to B. The program should
use three different algorithms to figure out the answer and also output the time it takes using all
the methods.
The three algorithms are as follows:

Algorithm 1 (Naive) It should try the sum of every pair of numbers in A and check whether it
adds up to B. Report YES as soon as a pair is found, else report NO. Also report the time
taken by this algorithm.

Algorithm 2 (Smart) It should first sort A, and then for each number in A, it should perform
binary search to check whether a pair of numbers in A adds up to B. Report YES as soon
as a pair is found, else report NO. Also report the time taken by this algorithm.

Algorithm 3 (Smart2) It should first store the items of A in a simple binary search tree, and
then for each number in A, it should perform a search to check whether a pair of numbers in
A adds up to B. Report YES as soon as a pair is found, else report NO. Also report the time
taken by this algorithm.

Repeat the above process for values of n equal to 32, 64, 128, 256, 512, 1024, and 2048. For each
value of n, test it on 100 different values of B. Then output the average time taken for successful
searches and the average time taken for unsuccessful searches by algorithms 1, 2, and 3 on the 100
runs for each value of n.

Notes

Which sorting algorithm should you use? Something to think about! Which one is known to be
fastest in practice? If you want, you can use a hybrid sorting algorithm. If you want, you could
use more than one to compare. You could try larger values of n (i.e., higher powers of two) and
take the run times for the two algorithms and plot them on a graph. Why is it convenient to use
powers of two for n? You could also plot the curves nlgn and n? for each value of n on the same
plot. How will that help? Do the run times confirm what you know from your theoretical analysis?
You may use C++, C, Java, or Perl to do your task. Do not count the time it takes to read in
the values into the array A. Do not count the time it takes to read in the value of B. If you want
you can write two different programs for the two algorithms, although I suggest putting it in one
program. Make sure that your algorithm does not report YES if the array has the number B/2.



You are given one data file with 2048 numbers in it. For values of n smaller than 2048, simply
use the first n values from the same file. Document your program well and print out the source
code and the output for submission.

Write a short (at most 2 pages) report summarizing your conclusions from the study. This
summary is a very important part of your project.

Working in Teams

You may work in teams of size 1 or 2. If your team has two members then you will need to
implement a second sorting algorithm (for Algorithm 2) or a red-black tree or any balanced tree
method (for Algorithm 3) in addition to the 3 algorithms required above and to do a thorough
comparison between all the algorithms implemented.



