COT 5407: Introduction to Algorithms

Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407F08.html https://online.cis.fiu.edu/portal/course/view.php?id=285

8/28/07

Algorithms are "recipes"!

Algorithms can be simple

Dilbert by Scott Adams From the ClariNet electronic newspaper Redistribution prohibited info@clarinet.com

Why should I care about Algorithms?

Cartoon from Intractability by Garey and Johnson

"I can't find an efficient algorithm, I guess I'm just too dumb."

More questions you should ask

- Who should know about Algorithms?
- Is there a future in this field?
- Would I ever need it if I want to be a software engineer or work with databases?

Why are theoretical results useful?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Cartoon from *Intractability* by Garey and Johnson COT 5407 6

Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."

Cartoon from *Intractability* by Garey and Johnson

8/28/07

COT 5407

Evaluation

•	Exams (2)	50%
•	Quizzes	10%
•	Homework Assignments	30%
•	Semester Project	5%
•	Class Participation	5%

History of Algorithms

The great thinkers of our field:

- Euclid, 300 BC
- Bhaskara, 6th century
- Al Khwarizmi, 9th century
- Fibonacci, 13th century
- Babbage, 19th century
- Turing, 20th century
- von Neumann, Knuth, Karp, Tarjan, ...

Al Khwarizmi's algorithm

- 43 X 17
 - 43 17
 - 21 34
 - 10 68 (ignore)
 - 5 136
 - 2 272 (ignore)
 - 1 544

731

Euclid's Algorithm

- GCD(12,8) = 4; GCD(49,35) = 7;
- GCD(210,588) = ??
- GCD(a,b) = ??
- Observation: [a and b are integers and a ≥ b]
 GCD(a,b) = GCD(a-b,b)
- Euclid's Rule: [a and b are integers and $a \ge b$]
 - $GCD(a,b) = GCD(a \mod b, b)$
- Euclid's GCD Algorithm:
 - GCD(a,b)

If (b = 0) then return a; return GCD(a mod b, b)

If you like Algorithms, nothing to worry about!

Search

 You are asked to guess a number X that is known to be an integer lying in the range A through B. How many guesses do you need in the worst case?

- Use binary search; Number of guesses = $\log_2(B-A)$

- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
 - NOTE: No upper bound is known for the number.
 - Algorithm:
 - figure out B (by using Doubling Search)
 - perform binary search in the range B/2 through B.
 - Number of guesses = $\log_2 B + \log_2 (B B/2)$
 - Since X is between B/2 and B, we have: $log_2(B/2) < log_2X$,
 - Number of guesses < $2\log_2 X 1$

Polynomial Evaluation

• Given a polynomial

- $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} + a_n x^n$

compute the value of the polynomial for a given value of x.

- How many additions and multiplications are needed?
 - Simple solution:
 - Number of additions = n
 - Number of multiplications = 1 + 2 + ... + n = n(n+1)/2
 - Reusing previous computations: n additions and 2n multiplications!
 - Improved solution using Horner's rule:
 - $p(x) = a_0 + x(a_1 + x(a_2 + ... + x(a_{n-1} + x + a_n))...))$
 - Number of additions = n
 - Number of multiplications = n