Exam Dates (Tentative)

- Midterm October 9

Final Exam December 11 (??)

Homework Assignments
- Sep 11, Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18

* Quizzes

- Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18,
Semester Project October 1

9/9/08 COT 5407

Sorting

» Input is a list of n items that can be compared.
Output is an ordered list of those n items.

Fundamental problem that has received a lot of attention
over the years.

Used in many applications.
Scores of different algorithms exist.

Task: To compare algorithms
- On what bases?

- Time

- Space

* Other

9/9/08 COT 5407 2

Sorting Algorithms

- SelectionSort

« InsertionSort
- BubbleSort

- ShakerSort
* MergeSort

+ HeapSort
+ QuickSort
+ Bucket & Radix Sort

- Counting Sort

9/9/08 COT 5407

SelectionSort

Array Position

Initial State

After Iteration 1

After Iteration 2

After Iteration 3

After Iteration 4

After Iteration 5

N N[N NN [0 | O

W W wl w| OO

o1 | O | O |\ O |0 | O | N

O | O | OO | OO (OO ([N | W

o |00 |0 O[O | O | Db

O O | O O | Ww | w | O

9/9/08

COT 5407

How to prove invariants & correctness

- Initialization: prove it is true at start

* Maintenance: prove it is maintained within iterative control
structures

* Termination: show how to use it to prove correctness

9/9/08 COT 5407 5

Algorithm Analysis

- Worst-case time complexity

* (Worst-case) space complexity

+ Average-case time complexity

9/9/08 COT 5407

SelectionSort

SELECTIONSORT(array A)

1 N <« length|A]
2 forp—1to N
do > Compute

3 J—p

4 form—p+1to N

5 do if (Ajm| < Alj])

§ then j — m
> Swap Alp| and A|j]

7 temp «— Alp|

8 Alp] — Alj]

9 Alj] < temp

9/9/08 COT 5407

O(n?) time
O(1) space

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

[for j « 2tolength[A]

2 do key < A[J]

3 > Insert A[j] into the sorted sequence A[l..j — 1].
4 i — j—1

5 while/ > O and A[i] > key

6 do Ali + 1] «— A[i]

7 | — i — |

8 Ali + 1] < key

Loop invariants and the correctness of insertion sort

9/9/08 COT 5407 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

2
3

S0 =] o h

for | <« 2 to lenoth[A]

9/9/08

do key < A[j]

= Insert A[j] into the sorted
sequence A[L.. j —1].

I — j—1

while i > 0 and A[i] > key
do Ali + 1] «— A[{]

P — [— |

Ali + 1] « key

COT 5407

Hn

ey

InsertionSort: Algorithm Invariant

- iteration k:
- the first k items are in sorted order.

9/9/08 COT 5407 10

Figure 8.3

Basic action of insertion sort (the shaded part is sorted)

Array Position 0| 1 2 | 3| 4| 5
Initial State 8 | 5|1 9| 2| 6| 3
After a[0..1] is sorted 5| 8| 9] 2| 6| 3
After a[0..2] is sorted 5|1 8| 9| 2| 6| 3
After a[0..3] is sorted 2 | 5|1 8| 9| 6| 3
After a[0..4] is sorted 2 | 5|1 61| 8] 9| 3
After a[0..5] is sorted 2 | 3| 5| 61| 8|9
9/9/08 COT 5407 11

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss

© 2002 Addison Wesley

Figure 8.4

A closer look at the action of insertion sort (the dark shading indicates the
sorted area; the light shading is where the new element was placed).

Array Position o | 1 2 | 3| 4|5
Initial State 8 | 5
After a[0..1] is sorted 5|1 81| 9
After a[0..2] is sorted 5|1 81| 9| 2
After a[0..3] is sorted 2 | 51 8| 9| 6
After a[0..4] is sorted 2 | 5|1 6| 8| 9| 3
After a[0..5] is sorted 2 1 3| 5| 6| 8|9

9/9/08

COT 5407 12

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BUBBLESORT(A)

| fori < 1tolength|A]

2 do for j < length[A] downto i + 1
3 doif A[j] < A[j — 1]

then exchange A[j] < A[j — 1]

N

O(n?) time
O(1) space

9/9/08 COT 5407 13

BubbleSort: Algorithm Invariant

* In each pass, a scan is made in one direction
and every item that does not have a smaller
item after it, is moved as far up in the list as
possible ("bubbled” up).

- Tteration k:

- k smallest items are in the correct location.

9/9/08 COT 5407 14

ShakerSort

* In each pass, two scans are made first in one
direction and then in the opposite direction;

* Every item that does not have a smaller item

after it, is moved up in the list as far as
possible ("bubbled” up) .

» Every item that does not have a larger item

before it, is moved down in the list as far as
possible ("bubbled” down) .

9/9/08 COT 5407 15

Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/9/08 COT 5407 16

Comparing O(n?) Sorting Algorithms

+ InsertionSort and SelectionSort (and ShakerSort) are

roughly twice as fast as BubbleSort for small files.
+ InsertionSort is the best for very small files.

* O(n?) sorting algorithms are NOT useful for large random
files.

» If comparisons are very expensive, then among the O(n?)
sorting algorithms, InsertionSort is best.

+ If data movements are very expensive, then among the O(n?)
sorting algorithms, ?? is best.

9/9/08 COT 5407 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

......... !r I’i - e ”

9/9/08

£(n) = ©(z(n)) " fn) = 0(e(n)) ") = Q)

(a) (b) (c)

Figure 3.1 Graphic examples of the ©, O, and £ notations. In each part, the value of npy shown is
the minimum possible value; any greater value would also work. (a) ®-notation bounds a function to
within constant factors, We write f(n) = ®(g(n)) if there exist positive constants ng, ¢;, and 7 such
that to the right of ng, the value of f(n) always lies between ¢jg(rn) and c2¢(n) inclusive. (b) O-

if there are positive constants ny and ¢ such that to the right of np, the value of f(n) always lies on
or below cg(n). (¢) S-notation gives a lower bound for a function to within a constant factor. We
write f(n) = £2(g(n)) if there are positive constants ng and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n).

COT 5407 18

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = 0O(nlogn)

T(n) = al(n/b) T+ O(n);

T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n);
f(n) = O(n'9%)

T(n) = ©(n'°%2|ogn)

T(n) = aT(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%eogn)

19

Solving Recurrences by Substitution

+ Guess the form of the solution

+ (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2¢cn/2 + n= (c+1) n

Our guess was wrong!!

9/9/08 COT 5407 20

Solving Recurrences by Substitution:

T(n) = 2T(n/2) + n

Guess (#2) T(n) = O(n3)
Need

Assu
Thus

me

9/9/08

T(n) <= cn? for some constant ¢>0
T(n/2) <= cn?/4 Inductive hypothesis
T(n) <= 2cn2/4 + n = cn?/2+ n

Works for all n as long as c>=2 |l

But there is a lot of "slack”

COT 5407

21

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need
Assume
Thus

Show

9/9/08

T(n) <= cnlogn for some constant ¢>0
T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
T(n) <= 2 c¢(n/2)(log(n/2)) + n

<= cnlogn -cn + n <= cnlogn
Works for all n as long as c>=1 |l
This is the correct guess. WHY?
T(n) >= c'nlogn for some constant c¢'>0

COT 5407 22

Solving Recurrences: Recursion-tree method

Substitution method fails when a good guess is not available

Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the
children

Expand the children
Add up each level
Sum up the levels

Useful for analyzing divide-and-conquer algorithms

Also useful for generating good guesses to be used by
substitution method

9/9/08 COT 5407 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2

T(n) et Cr
TH T TiH e(3) c($)? e ()

TR TR TR Ty T T TR TE) T

......

() [[13] (ch
A H#H#,Hf"#fﬂ,,ef”"'c"i‘Hmﬁh““Haxhﬁhhhhhh‘ - ent
cl3 ¥ E}z :‘{%’JJ ----------- s T:Irn:
f/iﬁ f/tH' c (i)’ B el eyl o(E) o(f c(f) weme () en?

Y T T) T TO) TOO T) TC) T TAY TAY <=e T(1) TO) TAH) i @iy
———— —

——

id Total: Hn*)

Figure 4.1 The construction of a recursion tree for the recurrence T = 3r{n/4) + cnl
9/9/08 Past da} shows T'(n), which is progressively expanded in (b=(d) 10 form the recursion tree. The
fully expanded trec in part (d) his height bogy o (it has logs n 4 1 levels),

24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/\

L C — COCTTTTETT YT ee (TR
ogs/ / \ / \
L2 2 4
c@ e c®) () i
r b P]] 1 I L
f‘ II'I JJ 11 I' 'I'I I'|I '|'|
f 1 ' \ i 1 i 1

CH

ch

Total: O(nlgn)

Figure 4.2 A recursion tree for the recurrence 7 (n) = T(n/3) + T (2n/3) + cn.

JI1II1VO LUl o4Vl

£

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = 0O(nlogn)

T(n) = al(n/b) T+ O(n);

T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n);
f(n) = O(n'9%)

T(n) = ©(n'°%2|ogn)

T(n) = aT(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%eogn)

26

Solving Recurrences using Master Theorem

Master Theorem:
Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog,2-¢) for some constant e>0, then
T(n) = Theta(n'os,°)

2. If f(n) = Theta(nlos,2), then
T(n) = Theta(nles,2 log n)

3. If f(n) = Omega(nlos 2) for some constant e>0, then
T(n) = Theta(f(n))

9/9/08 COT 5407 27

Problems to think about!

What is the least humber of comparisons you need to sort a
list of 3 elements? 4 elements? 5 elements?

How to arrange a tennis tournament in order to find the
tournament champion with the least number of matches?
How many tennis matches are needed?

9/9/08 COT 5407 28

