Exam Dates (Tentative)

- Midterm
- Final Exam

October 9 December 11 (??)

- Homework Assignments
 - Sep 11, Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18
- Quizzes
 - Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18,
- Semester Project October 1

Sorting

- Input is a list of n items that can be compared.
- Output is an ordered list of those n items.
- Fundamental problem that has received a lot of attention over the years.
- Used in many applications.
- Scores of different algorithms exist.
- Task: To compare algorithms
 - On what bases?
 - Time
 - Space
 - \cdot Other

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

SelectionSort

0	1	2	3	4	5
8	5	9	2	6	3
2	5	9	8	6	3
2	3	9	8	6	5
2	3	5	8	6	9
2	3	5	6	8	9
2	3	5	6	8	9
	8 2 2 2 2 2	8 5 2 5 2 3 2 3 2 3 2 3	8 5 9 2 5 9 2 3 9 2 3 9 2 3 5 2 3 5 2 3 5 2 3 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 9 2 6 2 5 9 8 6 2 3 9 8 6 2 3 5 8 6 2 3 5 8 6 2 3 5 8 6 2 3 5 8 6 2 3 5 8 6 2 3 5 8 6

How to prove invariants & correctness

- Initialization: prove it is true at start
- Maintenance: prove it is maintained within iterative control structures
- Termination: show how to use it to prove correctness

Algorithm Analysis

- Worst-case time complexity
- (Worst-case) space complexity
- Average-case time complexity

SelectionSort

S	SelectionSort($array A$)				
1	$N \leftarrow length[A]$				
2	for $p \leftarrow 1$ to N				
	$\mathbf{do} \triangleright \operatorname{Compute} j$				
3	$j \leftarrow p$				
4	for $m \leftarrow p+1$ to N				
5	do if $(A[m] < A[j])$				
6	$\mathbf{then}\; j \leftarrow m$				
	\triangleright Swap $A[p]$ and $A[j]$				
7	$temp \leftarrow A[p]$				
8	$A[p] \leftarrow A[j]$				
Q	$A[j] \leftarrow temp$				

O(n²) time O(1) space

INSERTION-SORT(A) for $j \leftarrow 2$ to length[A] 1 2 do key $\leftarrow A[i]$ 3 \triangleright Insert A[j] into the sorted sequence $A[1 \dots j - 1]$. 4 $i \leftarrow j - 1$ 5 while i > 0 and A[i] > key6 do $A[i + 1] \leftarrow A[i]$ 7 $i \leftarrow i - 1$ 8 $A[i+1] \leftarrow key$

Loop invariants and the correctness of insertion sort

IN	SERTION-SORT (A)	cost	times
1	for $j \leftarrow 2$ to length[A]	C_1	п
2	do key $\leftarrow A[j]$	C2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j - 1]$.	0	n - 1
4	$i \leftarrow j - 1$	C_4	n - 1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
6	do $A[i + 1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C_7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	c_8	n-1

O(n²) time O(1) space

InsertionSort: Algorithm Invariant

- iteration k:
 - the first k items are in sorted order.

Figure 8.3

Basic action of insertion sort (the shaded part is sorted)

Array Position	0	1	2	3	4	5
Initial State	8	5	9	2	6	3
After a[01] is sorted	5	8	9	2	6	3
After a[02] is sorted	5	8	9	2	6	3
After a[03] is sorted	2	5	8	9	6	3
After a[04] is sorted	2	5	6	8	9	3
After a[05] is sorted	2	3	5	6	8	9

9/9/08

Figure 8.4

A closer look at the action of insertion sort (the dark shading indicates the sorted area; the light shading is where the new element was placed).

Array Position	0	1	2	3	4	5
Initial State	8	5				
After a[01] is sorted	5	8	9			
After a[02] is sorted	5	8	9	2		
After a[03] is sorted	2	5	8	9	6	
After a[04] is sorted	2	5	6	8	9	3
After a[05] is sorted	2	3	5	6	8	9

BUBBLESORT(A)1for $i \leftarrow 1$ to length[A]2do for $j \leftarrow length[A]$ downto i + 13do if A[j] < A[j - 1]4then exchange $A[j] \leftrightarrow A[j - 1]$

O(n²) time O(1) space

BubbleSort: Algorithm Invariant

- In each pass, a scan is made in one direction and every item that does not have a smaller item after it, is moved as far up in the list as possible ("bubbled" up).
- Iteration k:

- k smallest items are in the correct location.

ShakerSort

- In each pass, two scans are made first in one direction and then in the opposite direction;
- Every item that does not have a <u>smaller</u> item <u>after</u> it, is <u>moved up</u> in the list as far as possible ("bubbled" up).
- Every item that does not have a <u>larger</u> item <u>before</u> it, is <u>moved down</u> in the list as far as possible ("bubbled" down).

Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/

Comparing O(n²) Sorting Algorithms

- InsertionSort and SelectionSort (and ShakerSort) are roughly twice as fast as BubbleSort for small files.
- InsertionSort is the best for very small files.
- O(n²) sorting algorithms are NOT useful for large random files.
- If comparisons are very expensive, then among the $O(n^2)$ sorting algorithms, InsertionSort is best.
- If data movements are very expensive, then among the O(n²) sorting algorithms, ?? is best.

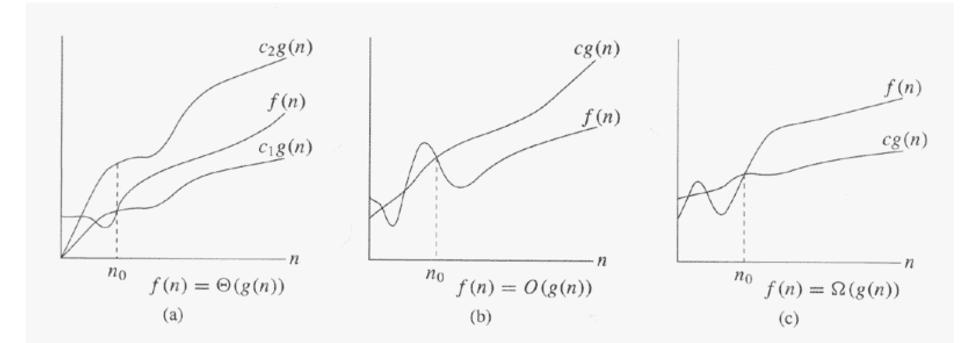


Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or allow cg(n).

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

19

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

	T(n) = 2T(n/2)	+ n
Guess (#1)	T(n) = O(n)	
Need	T(n) <= cn	for some constant c>0
Assume	T(n/2) <= cn/2	Inductive hypothesis
Thus	T(n) <= 2cn/2 + n =	(c+1) n
	Our guess was wr	ong!!
9/9/08	СОТ	5407

Solving Recurrences by Substitution: 2

$$T(n) = 2T(n/2) + n$$

Guess (#2) $T(n) = O(n^2)$

Need $T(n) <= cn^2$ for some constant c>0

Assume $T(n/2) \ll cn^2/4$ Inductive hypothesis

Thus

 $T(n) \le 2cn^2/4 + n = cn^2/2 + n$

Works for all n as long as c>=2 !! But there is a lot of "slack"

Solving Recurrences by Substitution: 3

	T(n) = 2T(n/2)) + n
Guess (#3)	T(n) = O(nlogn)	
Need	T(n) <= cnlogn	for some constant c>0
Assume	T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
Thus	T(n) <= 2 c(n/2)(log(n/2))) + n
	<= cnlogn -cn + n <= c	nlogn
	Works for all n as long	as c>=1 !!
	This is the correct gues	ss. WHY?
Show	T(n) >= c'nlogn	for some constant c'>0

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

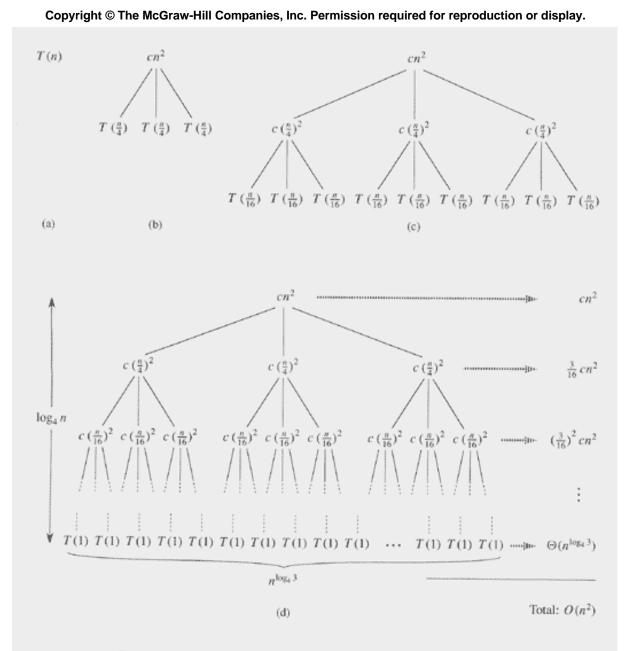


Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

24

9/9/08

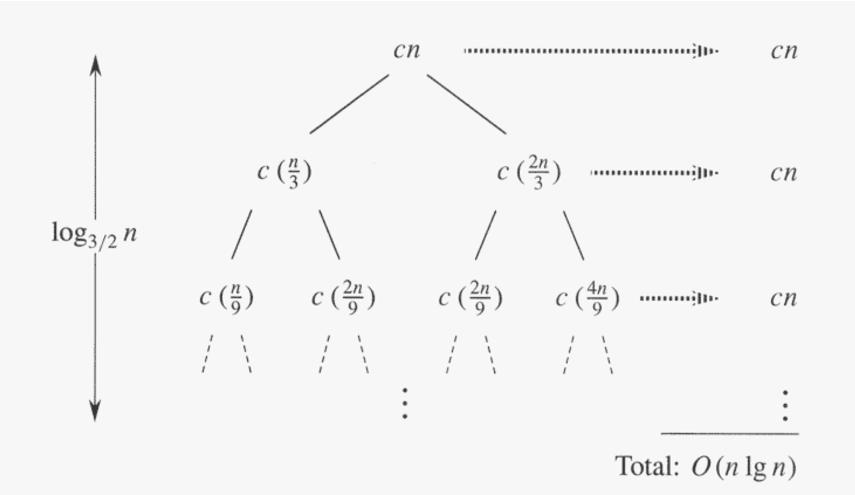


Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

26

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a e})$ for some constant e>0, then T(n) = Theta($n^{\log_b a}$)
- 2. If $f(n) = Theta(n^{\log_{b} a})$, then T(n) = Theta($n^{\log_{b} a} \log n$)
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then T(n) = Theta(f(n))

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?