
9/9/08 COT 5407 1

Exam Dates (Tentative)

• Midterm October 9

• Final Exam December 11 (??)

• Homework Assignments

– Sep 11, Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18

• Quizzes

– Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18,

• Semester Project October 1

9/9/08 COT 5407 2

Sorting

• Input is a list of n items that can be compared.

• Output is an ordered list of those n items.

• Fundamental problem that has received a lot of attention

over the years.

• Used in many applications.

• Scores of different algorithms exist.

• Task: To compare algorithms

– On what bases?

• Time

• Space

• Other

9/9/08 COT 5407 3

Sorting Algorithms

• SelectionSort

• InsertionSort

• BubbleSort

• ShakerSort

• MergeSort

• HeapSort

• QuickSort

• Bucket & Radix Sort

• Counting Sort

9/9/08 COT 5407 4

SelectionSort

986532After Iteration 5

986532After Iteration 4

968532After Iteration 3

568932After Iteration 2

368952After Iteration 1

362958Initial State

543210Array Position

9/9/08 COT 5407 5

How to prove invariants & correctness

• Initialization: prove it is true at start

• Maintenance: prove it is maintained within iterative control

structures

• Termination: show how to use it to prove correctness

9/9/08 COT 5407 6

Algorithm Analysis

• Worst-case time complexity

• (Worst-case) space complexity

• Average-case time complexity

9/9/08 COT 5407 7

SelectionSort

O(n2) time

O(1) space

9/9/08 COT 5407 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/9/08 COT 5407 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O(n2) time

O(1) space

9/9/08 COT 5407 10

InsertionSort: Algorithm Invariant

• iteration k:

– the first k items are in sorted order.

9/9/08 COT 5407 11

Figure 8.3
Basic action of insertion sort (the shaded part is sorted)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

9/9/08 COT 5407 12

Figure 8.4
A closer look at the action of insertion sort (the dark shading indicates the
sorted area; the light shading is where the new element was placed).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

9/9/08 COT 5407 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

O(n2) time

O(1) space

9/9/08 COT 5407 14

BubbleSort: Algorithm Invariant

• In each pass, a scan is made in one direction

and every item that does not have a smaller

item after it, is moved as far up in the list as

possible (“bubbled” up).

• Iteration k:

– k smallest items are in the correct location.

9/9/08 COT 5407 15

ShakerSort

• In each pass, two scans are made first in one
direction and then in the opposite direction;

• Every item that does not have a smaller item
after it, is moved up in the list as far as
possible (“bubbled” up) .

• Every item that does not have a larger item
before it, is moved down in the list as far as
possible (“bubbled” down) .

9/9/08 COT 5407 16

Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/9/08 COT 5407 17

Comparing O(n2) Sorting Algorithms

• InsertionSort and SelectionSort (and ShakerSort) are

roughly twice as fast as BubbleSort for small files.

• InsertionSort is the best for very small files.

• O(n2) sorting algorithms are NOT useful for large random

files.

• If comparisons are very expensive, then among the O(n2)

sorting algorithms, InsertionSort is best.

• If data movements are very expensive, then among the O(n2)

sorting algorithms, ?? is best.

9/9/08 COT 5407 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/9/08 COT 5407 19

9/9/08 COT 5407 20

Solving Recurrences by Substitution

• Guess the form of the solution

• (Using mathematical induction) find the constants and show

that the solution works

Example

T(n) = 2T(n/2) + n

Guess (#1) T(n) = O(n)

Need T(n) <= cn for some constant c>0

Assume T(n/2) <= cn/2 Inductive hypothesis

Thus T(n) <= 2cn/2 + n = (c+1) n

Our guess was wrong!!

9/9/08 COT 5407 21

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)

Need T(n) <= cn2 for some constant c>0

Assume T(n/2) <= cn2/4 Inductive hypothesis

Thus T(n) <= 2cn2/4 + n = cn2/2+ n

Works for all n as long as c>=2 !!

But there is a lot of “slack”

9/9/08 COT 5407 22

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)

Need T(n) <= cnlogn for some constant c>0

Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis

Thus T(n) <= 2 c(n/2)(log(n/2)) + n

 <= cnlogn -cn + n <= cnlogn

Works for all n as long as c>=1 !!

This is the correct guess. WHY?

Show T(n) >= c’nlogn for some constant c’>0

9/9/08 COT 5407 23

Solving Recurrences: Recursion-tree method

• Substitution method fails when a good guess is not available

• Recursion-tree method works in those cases

– Write down the recurrence as a tree with recursive calls as the

children

– Expand the children

– Add up each level

– Sum up the levels

• Useful for analyzing divide-and-conquer algorithms

• Also useful for generating good guesses to be used by

substitution method

9/9/08 COT 5407 24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/9/08 COT 5407 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/9/08 COT 5407 26

9/9/08 COT 5407 27

Solving Recurrences using Master Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

T(n) = Theta(nlog
b
a)

2. If f(n) = Theta(nlog
b
a), then

T(n) = Theta(nlog
b
a log n)

3. If f(n) = Omega(nlog
b
a+e) for some constant e>0, then

T(n) = Theta(f(n))

9/9/08 COT 5407 28

Problems to think about!

• What is the least number of comparisons you need to sort a

list of 3 elements? 4 elements? 5 elements?

• How to arrange a tennis tournament in order to find the

tournament champion with the least number of matches?

How many tennis matches are needed?

