Animation Demos

http://cg.scs.carleton.ca/~morin/misc/sortalg/

http://home.westman.wave.ca/~rhenry/sort/
- Shows time complexities on best, worst and average case

http://vision.bc.edu/~dmartin/teaching/sorting/anim-
html/quick3.html

- runs on almost sorted, reverse, random, and unique inputs; shows
code with invariants

http://www.brian-borowski.com/Sorting/

- Shows comparisons and movements, and animations in stepwise
fashion; it allows users to input their own data

http://maven.smith.edu/~thiebaut/java/sort/demo.html
- Shows comparisons and data movements and step by step execution.

9/11/08 COT 5407 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

......... !r I’i - e ”

£(n) = ©(z(n)) " fn) = 0(e(n)) ") = Q)
(a) (b) ©

Figure 3.1 Graphic examples of the ©, O, and £ notations. In each part, the value of npy shown is
the minimum possible value; any greater value would also work. (a) ®-notation bounds a function to
within constant factors, We write f(n) = ®(g(n)) if there exist positive constants ng, ¢;, and 7 such
that to the right of ng, the value of f(n) always lies between ¢jg(rn) and c2¢(n) inclusive. (b) O-

if there are positive constants ny and ¢ such that to the right of np, the value of f(n) always lies on
or below cg(n). (¢) S-notation gives a lower bound for a function to within a constant factor. We
write f(n) = £2(g(n)) if there are positive constants ng and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n).

9/11/08 COT 5407 2

Examples
3n3+16n2-7n+ 299

= O(n3) Why?
Because
3n3+16n2-7n+299< 3n3+16n3 + 7n3 + 299n3
< 325n3

Thus for ¢ = 325 and n,, = 1, the definition of big-Oh is satisfied.

9/11/08 COT 5407 3

SelectionSort

SELECTIONSORT(array A)
1 N <« length|A]

2 forp—1to N O(n?) time
5 do ?Eoénpme J O(1) space
4 form—p+1to N
5 do if (Ajm| < Alj])
§ then j — m
> Swap Alp| and A|j]
7 temp «— Alp|
8 Alp] — Alj]
9 Alj] < temp

T(n) <= T(n-1) + 7n

9/11/08 COT 5407

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) <= T(n-1) + 3n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n-1) <= ¢(n-1) Inductive hypothesis
Thus T(n) <= ¢(n-1) + 3n <= (c+3) n

Our guess was wrong!!

9/11/08 COT 5407 5

Solving Recurrences by Substitution: 2

T(n) <= T(n-1) + 3n

Guess (#2) T(n) = O(n3)

Need T(n) <= cn? for some constant ¢>0
Assume T(n-1) <= c(n-1)> Inductive hypothesis
Thus T(n) <= ¢(n-1)2 + 3n=cn? - 2cn + ¢ + 3n
=cn¢-(2c-3)n+c
<= cnh?

Works as long as ¢>=2 for all n > ¢/(2c-3) |
This is the correct guess. WHY?

9/11/08 COT 5407 6

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n) T(n) = 0O(nlogn)

T(n) =al'(n/b) + O(n); T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n); | T(n) = ©(nl°%log n)
f(n) = O(n'%)

T(n) = aT(n/b) + f(n); | T(n) = Q2(nP%310g n)
f(n) = ©(f(n))
af (n/b) < ef(n)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

2
3

S0 =] o h

for | <« 2 to lenoth[A]

do key < A[j]
= Insert A[j] into the sorted
sequence A[L.. j —1].
i «— j—1
while i > 0 and A[i] > key
do Ali + 1] < A[i]
P «—1—1

Ali + 1] « key

T(n) <= T(n-1) + 6n

9/11/08

COT 5407

Hmes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BUBBLESORT(A)
| fori < 1tolength|A]
2 do for j < length[A] downto i + 1
3 doif A[j] < A[j — 1]
4 then exchange A[j] < A[j — 1]
O(n?) time
T(n) <= T(n'l) + 6n O(1) space

9/11/08 COT 5407 9

Sorting Algorithms

- SelectionSort

« InsertionSort
- BubbleSort

- ShakerSort
* MergeSort

+ HeapSort
+ QuickSort
+ Bucket & Radix Sort

- Counting Sort

9/11/08 COT 5407 10

Visualizing Algorithms 1

Position

|

Ty b i
tr o b FeTeT e 2ty i

Sorted

Unsorted

11

COT 5407

9/11/08

Visualizing Algorithms 2

Position

Un.so‘rted - Sorted

9/11/08 COT 5407 12

Visualizing Comparisons 3

oo b /s

N
SIS
AN
t\

/(I RS
e
y/ 47/
/41 /I
Y /411 //A OASN
AU [P HERSs
AN s
T Za0
AV Vs
VAN 7ZA%S
AN N
AHHNIN N
VA AN N ZAN
24NN
WXV N
@ ANN 72N
N2 ANN7

FVUARANAN N
-. /.. .r. .u/ .). //./.

..-. : vl e g e o A

...._.. __._ __. _ ' __ __,._...,_,/._,. // 3 \\ \ \\\m_.‘ _._. iy ___ ..__ AN

Y
YWD
YWY
PV
AT

PRI

INKA AT

N ZZA IR
A AR
AT NY
KXY/

A AN 2
e ANNZ

I5& KL

S FATIINNNS
Sk AT

P W MINN
RS TN

™
—

:§§§?,
KA

X
el

COT 5407

,.\w\ m /&\\ “ — _._

BEH NI
D VW
SRR/
K G
2 SR __.\“
PN K YNV

9/11/08

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sorted sequence

1 2 2 3 4 3 6 7
/ merge \

2 4 5 7 1 2 3 6

merge \ merge

2 5 - 7 3 2 6

1
merg& merge Acrg& merge

5 3 4 7 1 3 s m

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1,3, 2,6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

0 UL LIS 6 17 A0 L I 80 10 1012 13 W 15 06 1] B0 10 10 1203 14 15 16 11
e gt A JI A...l2234it
k k [k
1 21 43 1 2 1 4 5 1 2 3 4 5§ | 21 4 § :
Li2]4{517] R[1[2]3]6]w L{2]4]5]7]e R.Zf{ﬁm L3345 123458 FERERE .n;s
i j !] L] oo LR ¢ s
(W) ’ J ’ /
(e) il
B9 10 011 12 13 M4 15 16 17 B0 Wi niusmn
A'“”—Z ""'IH-Z B9 1011213 IS 16 1]
: ¢ NNARDE
145 P 1408 | 1 4 5 2) 45
5[7]= R-E.’iﬁw LlJH?u * 3 [6]=
; |

L i? o f b
(c) (d) i, :

() (h)
Figure 2.3 The operation of lines 10-17 in the call MERGE(A. 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1,2, 3, 6}, Alter copying and inserting sentinels, the
array L contains (2,4, 5, 7, oc), and the array R contains {1, 2, 3, 6, oq). Lightly shaded positions § 0 10 011213 14 15 16 17
in A contain their final values, and lightly shaded positions in L and R contain values that have yel A TE2(2(3141516]71.
to be copied back into A. Taken together, the lightly shaded positions always comprise the values |

originally in A[9.. 16}, along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (al-h) The arrays A, L, and R, and their respective indices £, i, and i
prior (o each iteration of the loop of lines 12-17. (i) The arrays and indices at termination, At this
point,the subarray in A[9., 16] i sorted, and the two sentinels in £ and R are the only two elements
In these arrays that have not been copied into A.

()

9/11/08

Convriaht © The McGraw-Hill Comnanies. Inc. Permission reauired for renroduction or disnlav.

MERGE(A, p,q,r)

= D =

o0 1 O Lh

Ne

10
11
12
13
14
15
16
17

n<«<—q—p-+1

Ny <t —qg

create arrays L|1..n;+ 1]and R[1..n, + 1]

fori < 1 to n,
do L[i] < A[p +1 — 1]
for | < 1ton,
do R[j] < Alg + j]
Liny+ 1] « o
R[n, + 1] <« oo
] <«]
J <1
fork < ptor
doif L[i] < R[J]
then A[k] < LJi]
I <— 1+ 1
else A[k] < R]|/]
J < J+1

Assumption: Array
A is sorted from
positions p to g
and also from
positions gq+1 tor.

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MERGE-SORT (A, p, r)
if p <r
then ¢ < [(p +7)/2]
MERGE-SORT(A, p, q)
MERGE-SORT (A, g + 1, r)
MERGE(A, p, q,r)

N 5 W o =

9/11/08 COT 5407 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tir) on on
T(ni2) Tinf2) cmf2 cnf2
T{ni4) Tinfd) Tin/4) Tinid)
(5] (b} (c)
\ CH e e sl O
cnf2 CHI2 wvssmsmennonailie o
| cnfd chif4 el CR4 e e en

AR

— S
L — _
i
(d) Total: cn lg n + cn
Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn.

Part (a) shows T(n), which is progressively expunded in (b)~(d) to form the recursion tree. The
fully expanded tree in part (d) has Ig s + 1 levels (i.c., it has height 1g #, as indicated), and each level
9/11/08 contributes a total cost of cn. The total cost, therefore, is cn lg i + cn, which is ©(n g).

Merge: Algorithm Invariants

* Merge (many lists)

- ?2?

9/11/08 COT 5407

19

Figure 8.10 Quicksort

‘ Partition

Quicksort Quicksart
small items large items

9/11/08 COT 5407 20

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Partition

Figure A If 6is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

2

1

4

5

9/11/08

COT 5407

21

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

© 2002 Addison Wesley

QUICKSORT(array A,int p,int r)

1 if (p<r)

QuickSort 2 then ¢ «— PARTITION(A, p, 1)
3 QUICKSORT(A,p,q — 1)
4 QUICKSORT(A,q+ 1,r)

To sort array call QUICKSORT(A, 1, length|A]).

PARTITION(array A, int p,int r)
x — Alr] > Choose pivot
1—p—1
for j «— ptor —1
do if (A]j] <)
then i «— 1+ 1
exchange Ali] < A[j]
exchange Ali + 1] < Alr] Page 146, CLRS

return 2 + 1
9/11/08 COT 5407/ 22

B~ QO DN —

00 =] Gy O1

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2¢cn/2 + n = (c+1) n

Our guess was wrong!!

9/11/08 COT 5407 23

Solving Recurrences by Substitution:

T(n) = 2T(n/2) + n

Guess (#2) T(n) = O(n3)
Need

Assu
Thus

me

9/11/08

T(n) <= cn? for some constant ¢>0
T(n/2) <= cn?/4 Inductive hypothesis
T(n) <= 2cn2/4 + n = cn?/2+ n

Works for all n as long as ¢c>=2 |l

But there is a lot of "slack”

COT 5407

24

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need
Assume
Thus

Show

9/11/08

T(n) <= cnlogn for some constant ¢>0
T(n/2) <= c¢(n/2)(log(n/2)) Inductive hypothesis
T(n) <= 2 c¢(n/2)(log(n/2)) + n

<= chlogn -cn + n <= cnlogn
Works for all n as long as ¢c>=1 |l
This is the correct guess. WHY?
T(n) >= c'nlogn for some constant c>0

COT 5407 25

Solving Recurrences: Recursion-tree method

Substitution method fails when a good guess is not available

Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the
children

Expand the children
Add up each level
Sum up the levels

Useful for analyzing divide-and-conquer algorithms

Also useful for generating good guesses to be used by
substitution method

9/11/08 COT 5407 26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2

T(n) et Cr
TH T TiH e(3) c($)? e ()

TR TR TR Ty T T TR TE) T

......

() [[13] (ch
A H#H#,Hf"#fﬂ,,ef”"'c"i‘Hmﬁh““Haxhﬁhhhhhh‘ - ent
cl3 ¥ E}z :‘{%’JJ ----------- s T:Irn:
f/iﬁ f/tH' c (i)’ B el eyl o(E) o(f c(f) weme () en?

Y T T) T TO) TOO T) TC) T TAY TAY <=e T(1) TO) TAH) i @iy
———— —

——

id Total: Hn*)

Figure 4.1 The construction of a recursion tree for the recummence Tin) = 3T (n/d) + cn?,
9/11/08 Part {a} shows T(n), which is progressively expanded in (b)=(d) 1o form the recursion tree. The
fully exparded tree in part () hies height logy # (it has logg 4 1 levels),

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/\

L C — COCTTTTETT YT ee (TR
ogs/ / \ / \
L2 2 4
c@ e c®) () i
r b P]] 1 I L
f‘ II'I JJ 11 I' 'I'I I'|I '|'|
f 1 ' \ i 1 i 1

CH

ch

Total: O(nlgn)

Figure 4.2 A recursion tree for the recurrence 7 (n) = T(n/3) + T (2n/3) + cn.

I/ LL/IVO LUl o4Vl

£0

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = 0O(nlogn)

T(n) = al(n/b) T+ O(n);

T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n);
f(n) = O(n'9%)

T(n) = ©(n'°%2|ogn)

T(n) = aT(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%eogn)

29

Solving Recurrences using Master Theorem

Master Theorem:
Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(n'9,2¢) for some constant e>0, then
T(n) = Theta(n'os,°)

2. If f(n) = Theta(nles 2), then
T(n) = Theta(nlos,2 log n)

3. If f(n) = Omega(nlos,2+e) for some constant e>0, then
T(n) = Theta(f(n))

9/11/08 COT 5407 30

Problems to think about!

What is the least humber of comparisons you need to sort a
list of 3 elements? 4 elements? 5 elements?

How to arrange a tennis tournament in order to find the
tournament champion with the least number of matches?
How many tennis matches are needed?

9/11/08 COT 5407 31

