Animation Demos

- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
- Shows time complexities on best, worst and average case
- http://vision.bc.edu/~dmartin/teaching/sorting/animhtml/quick3.html
- runs on almost sorted, reverse, random, and unique inputs; shows code with invariants
- http://www.brian-borowski.com/Sorting/
- Shows comparisons and movements, and animations in stepwise fashion; it allows users to input their own data
- http://maven.smith.edu/~thiebaut/java/sort/demo.html
- Shows comparisons and data movements and step by step execution.

Figure 3.1 Graphic examples of the Θ, O, and Ω notations. In each part, the value of n_{0} shown is the minimum possible value; any greater value would also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n)=\Theta(g(n))$ if there exist positive constants n_{0}, c_{1}, and c_{2} such that to the right of n_{0}, the value of $f(n)$ always lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive. (b) O notation gives an upper bound for a function to within a constant factor. We write $f(n)=O(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or below $\operatorname{cg}(n)$. (c) Ω-notation gives a lower bound for a function to within a constant factor. We write $f(n)=\Omega(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0}, the value of $f(n)$ always lies on or above $c g(n)$.

Examples

$$
\begin{gathered}
3 n^{3}+16 n^{2}-7 n+299 \\
=O\left(n^{3}\right)
\end{gathered}
$$

Why?

Because

$$
\begin{aligned}
3 n^{3}+16 n^{2}-7 n+299< & 3 n^{3}+16 n^{3}+7 n^{3}+299 n^{3} \\
& <325 n^{3}
\end{aligned}
$$

Thus for $c=325$ and $n_{0}=1$, the definition of big-Oh is satisfied.

SelectionSort

SElectionSort (array A)
$1 \quad N \leftarrow$ length $[A]$
2 for $p \leftarrow 1$ to N
do \triangleright Compute j
$3 \quad j \leftarrow p$
$4 \quad$ for $m \leftarrow p+1$ to N
5
6

$$
\begin{gathered}
\text { do if }(A[m]<A[j]) \\
\text { then } j \leftarrow m
\end{gathered}
$$

\triangleright Swap $A[p]$ and $A[j]$
7
8
temp $\leftarrow A[p]$
$A[p] \leftarrow A[j]$
$A[j] \leftarrow t e m p$
$O\left(n^{2}\right)$ time
$O(1)$ space

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works
Example

$$
T(n)<=T(n-1)+3 n
$$

Guess (\#1) $\quad T(n)=O(n)$
Need
Assume
$T(n)<=c n$
for some constant c>0

Thus

$$
T(n-1)<=c(n-1) \quad \text { Inductive hypothesis }
$$

$T(n)<=c(n-1)+3 n<=(c+3) n$
Our guess was wrong!!

Solving Recurrences by Substitution: 2

$$
T(n)<=T(n-1)+3 n
$$

Guess (\#2) $T(n)=O\left(n^{2}\right)$
Need $\quad T(n)<=c n^{2} \quad$ for some constant $c>0$
Assume $\quad T(n-1)<=c(n-1)^{2} \quad$ Inductive hypothesis
Thus

$$
\begin{aligned}
T(n)< & =c(n-1)^{2}+3 n=c n^{2}-2 c n+c+3 n \\
& =c n^{2}-(2 c-3) n+c \\
& <=c n^{2}
\end{aligned}
$$

Works as long as $c>=2$ for all $n>c /(2 c-3)!!$
This is the correct guess. WHy?

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n \log n)$
$a=b$	
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n)$
$a<b$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=O(n)$
$f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
$f(n)=O\left(n^{\log _{b} a}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$
$f(n)=\Theta(f(n))$	
$a f(n / b) \leq c f(n)$	

```
INSERTION-SORT(A)
for }j\leftarrow2\mathrm{ to length[A]
2 do key }\leftarrowA[j
> Insert A[j] into the sorted
                    sequence }A[1\ldotsj-1]
\[
i \leftarrow j-1
\]
            i\leftarrowj-1
            while}i>0\mathrm{ and }A[i]>ke
            do }A[i+1]\leftarrowA[i
7 i}\leftarrowi-
8 A[i+1]\leftarrowkey
4
5
6
\[
A[i+1] \leftarrow k e y
\]
```

$T(n)<=T(n-1)+6 n$

BubBLESORT (A)

1 for $i \leftarrow 1$ to length[A]
2 do for $j \leftarrow$ length $[A]$ downto $i+1$
3
4

do if $A[j]<A[j-1]$

 then exchange $A[j] \leftrightarrow A[j-1]$$$
T(n)<=T(n-1)+6 n
$$

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
 O(1) space

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket \& Radix Sort
- Counting Sort

Visualizing Algorithms 1

Visualizing Algorithms 2

Visualizing Comparisons 3

Figure 2.4 The operation of merge sort on the array $A=\langle 5,2,4,7,1,3,2,6\rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


```
\(\operatorname{Merge}(A, p, q, r)\)
\(1 \quad n_{1} \leftarrow q-p+1\)
\(2 \quad n_{2} \leftarrow r-q\)
3 create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
4 for \(i \leftarrow 1\) to \(n_{1}\)
\(5 \quad\) do \(L[i] \leftarrow A[p+i-1]\)
6 for \(j \leftarrow 1\) to \(n_{2}\)
7 do \(R[j] \leftarrow A[q+j]\)
    \(L\left[n_{1}+1\right] \leftarrow \infty\)
    \(9 \quad R\left[n_{2}+1\right] \leftarrow \infty\)
\(10 \quad i \leftarrow 1\)
\(11 j \leftarrow 1\)
```

Assumption: Array A is sorted from positions p to q and also from positions $q+1$ to r.

```
12 for \(k \leftarrow p\) to \(r\)
13 do if \(L[i] \leq R[j]\)
\(14 \quad\) then \(A[k] \leftarrow L[i]\)
\(15 \quad i \leftarrow i+1\)
\(16 \quad\) else \(A[k] \leftarrow R[j]\)
17
    \(j \leftarrow j+1\)

\section*{Merge-Sort \((A, p, r)\)}

\section*{1 if \(p<r\)}
\(2 \quad\) then \(q \leftarrow\lfloor(p+r) / 2\rfloor\)

\section*{Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}


Figure 2.5 The construction of a recursion tree for the recurrence \(T(n)=2 T(n / 2)+c n\). Part (a) shows \(T(n)\), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has \(\lg n+1\) levels (i.e., it has height \(\lg n\), as indicated), and each level contributes a total cost of \(c n\). The total cost, therefore, is \(c n \lg n+c n\), which is \(\Theta(n \lg n)\).

\section*{Merge: Algorithm Invariants}
- Merge (many lists)
- ??

Figure 8.10 Quicksort


\section*{Partition}

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure \(B\).
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 1 & 4 & 5 & 0 & 3 & 9 & 8 & 7 & 6 \\
\hline
\end{tabular}


Figure B Result after Partitioning
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 1 & 4 & 5 & 0 & 3 & 6 & 8 & 7 & 9 \\
\hline
\end{tabular}
```

QuICKSort(array A, int p, int r)
1 if (}p<r\mathrm{)
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort (}A,q+1,r
To sort array call QuickSort $(A, 1$, length $[A])$.
Partition(array A, int p,int r)

```
\(1 \quad x \leftarrow A[r]\)
\(\triangleright\) Choose pivot
```

$2 \quad i \leftarrow p-1$
3 for $j \leftarrow p$ to $r-1$
$4 \quad$ do if $(A[j] \leq x)$ then $i \leftarrow i+1$
$6 \quad$ exchange $A[i] \leftrightarrow A[j]$
7 exchange $A[i+1] \leftrightarrow A[r]$
8 return $i+1$

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#1) $\quad T(n)=O(n)$

Need
Assume
Thus
$T(n)<=c n$
$T(n / 2)<=c n / 2$ Inductive hypothesis
$T(n)<=2 c n / 2+n=(c+1) n$
Our guess was wrong!!

Solving Recurrences by Substitution: 2

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#2) $T(n)=O\left(n^{2}\right)$

Need
Assume
Thus
$T(n)<=c n^{2}$
$T(n / 2)<=\mathrm{cn}^{2} / 4$ Inductive hypothesis
$T(n)<=2 n^{2} / 4+n=\mathrm{cn}^{2} / 2+n$
Works for all n as long as $c>=2$!!
But there is a lot of "slack"

Solving Recurrences by Substitution: 3

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#3) $T(n)=O(n \log n)$
Need $\quad T(n)<=c n l o g n \quad$ for some constant $c>0$
Assume $\quad T(n / 2)<=c(n / 2)(\log (n / 2)) \quad$ Inductive hypothesis
Thus
$T(n)<=2 c(n / 2)(\log (n / 2))+n$
<= cnlogn $-c n+n<=c n l o g n$
Works for all n as long as $c>=1$!!
This is the correct guess. WHY?
Show
$T(n)>=c^{\prime} n \log n$
for some constant $c^{\prime}>0$

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
- Write down the recurrence as a tree with recursive calls as the children
- Expand the children
- Add up each level
- Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)
(b)
(c)

Figure 4.1 The construction of a recursion tree for the recurrence $T(n)=3 T(n / 4)+\mathrm{cn}^{2}$. Part (a) shows T (n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log _{4} n$ (it has $\log _{4} n+1$ levels).

Figure 4.2 A recursion tree for the recurrence $T(n)=T(n / 3)+T(2 n / 3)+c n$.

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n \log n)$
$a=b$	
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n)$
$a<b$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=O(n)$
$f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
$f(n)=O\left(n^{\log _{b} a}\right)$	
$T(n)=a T(n / b)+f(n) ;$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$
$f(n)=\Theta(f(n))$	
$a f(n / b) \leq c f(n)$	

Solving Recurrences using Master Theorem

Master Theorem:

Let $a, b>=1$ be constants, let $f(n)$ be a function, and let

$$
T(n)=a T(n / b)+f(n)
$$

1. If $f(n)=O\left(n^{\log _{b} a-e}\right)$ for some constant $e>0$, then

$$
T(n)=\text { Thet } a\left(n^{\log _{b} a}\right)
$$

2. If $f(n)=$ Thet $a\left(n^{\log _{b} a}\right)$, then

$$
T(n)=\operatorname{Theta}\left(n^{\log _{b} a} \log n\right)
$$

3. If $f(n)=$ Omega $\left(n^{\log _{b} a+e}\right)$ for some constant $e>0$, then $T(n)=\operatorname{Theta}(f(n))$

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?

