Animation Demos

- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
 - Shows time complexities on best, worst and average case
- http://vision.bc.edu/~dmartin/teaching/sorting/animhtml/quick3.html
 - runs on almost sorted, reverse, random, and unique inputs; shows code with invariants
- http://www.brian-borowski.com/Sorting/
 - Shows comparisons and movements, and animations in stepwise fashion; it allows users to input their own data
- http://maven.smith.edu/~thiebaut/java/sort/demo.html
 - Shows comparisons and data movements and step by step execution.

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or allow cg(n).

COT 5407

Examples

 $3n^3 + 16n^2 - 7n + 299$ = $O(n^3)$ Why?

Because

 $3n^3 + 16n^2 - 7n + 299 < 3n^3 + 16n^3 + 7n^3 + 299n^3$ < $325n^3$

Thus for c = 325 and $n_0 = 1$, the definition of big-Oh is satisfied.

SelectionSort

\mathbf{S}	SelectionSort($array A$)					
1	$N \leftarrow length[A]$					
2	for $p \leftarrow 1$ to N		O(n ²) time			
	$\mathbf{do} \triangleright \mathbf{Compute} \ j$		O(1) space			
3	$j \leftarrow p$		0(1) 0000			
4	for $m \leftarrow p+1$ to N					
5	do if $(A[m] < A[j])$					
6	$\mathbf{then}\; j \leftarrow m$					
	\triangleright Swap $A[p]$ and $A[j]$					
7	$temp \leftarrow A[p]$					
8	$A[p] \leftarrow A[j]$					
9	$A[j] \leftarrow temp$					

9/11/08

T(n) <= T(n-1) + 7n

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

	T(n) <= T(n-1)) + 3n
Guess (#1)	T(n) = O(n)	
Need	T(n) <= cn	for some constant c>0
Assume	T(n-1) <= c(n-1)	Inductive hypothesis
Thus	T(n) <= c(n-1) + 3n <= (c+3) n	
	Our guess was w	rong!!
9/11/08	CO	OT 5407

Solving Recurrences by Substitution: 2

T(n) <=	T(n-1)	+ 3n
---------	--------	------

Guess (#2) $T(n) = O(n^2)$

T(n) <= cn² for some constant c>0

Assume $T(n-1) \le c(n-1)^2$ Inductive hypothesis

Thus

Need

T(n) <= c(n-1)² + 3n = cn² - 2cn + c + 3n = cn² - (2c - 3)n + c <= cn² Works as long as c>=2 for all n > c/(2c-3) !!

This is the correct guess. WHY?

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

7

IN	SERTION-SORT (A)	cost	times
1	for $j \leftarrow 2$ to length[A]	C_1	п
2	do key $\leftarrow A[j]$	C2	n - 1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1 \dots j - 1]$.	0	n - 1
4	$i \leftarrow j - 1$	C_4	n - 1
5	while $i > 0$ and $A[i] > key$	C_5	$\sum_{i=2}^{n} t_i$
6	do $A[i + 1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C_7	$\sum_{i=2}^{n} (t_i - 1)$
8	$A[i+1] \leftarrow key$	C8	n-1

O(n²) time O(1) space

$$T(n) <= T(n-1) + 6n$$

BUBBLESORT(A)1for $i \leftarrow 1$ to length[A]2do for $j \leftarrow length[A]$ downto i + 13do if A[j] < A[j - 1]4then exchange $A[j] \leftrightarrow A[j - 1]$

O(n²) time O(1) space

$$T(n) <= T(n-1) + 6n$$

COT 5407

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

COT 5407

11

Visualizing Comparisons 3

Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display.

```
MERGE(A, p, q, r)
    n_1 \leftarrow q - p + 1
 1
 2 n_2 \leftarrow r - q
 3 create arrays L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1]
 4 for i \leftarrow 1 to n_1
 5
           do L[i] \leftarrow A[p+i-1]
 6
    for j \leftarrow 1 to n_2
                                                 Assumption: Array
 7
           do R[j] \leftarrow A[q+j]
 8 L[n_1+1] \leftarrow \infty
                                                 A is sorted from
 9
    R[n_2+1] \leftarrow \infty
                                                 positions p to q
10 i \leftarrow 1
                                                 and also from
11 j \leftarrow 1
                                                 positions q+1 to r.
12 for k \leftarrow p to r
13
           do if L[i] \leq R[j]
14
                  then A[k] \leftarrow L[i]
15
                        i \leftarrow i + 1
16
                  else A[k] \leftarrow R[j]
17
                        j \leftarrow j + 1
                                                                   16
```

```
MERGE-SORT(A, p, r)1if p < r2then q \leftarrow \lfloor (p+r)/2 \rfloor3MERGE-SORT(A, p, q)4MERGE-SORT(A, q + 1, r)5MERGE(A, p, q, r)
```


Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

Merge: Algorithm Invariants

- Merge (many lists)
 - ??

Figure 8.10 Quicksort

COT 5407

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

2	1	4	5	0	3	6	8	7	9

QuickSort

QUICKSORT(array A, int p, int r) if (p < r)1 $\mathbf{2}$ then $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1)3 QUICKSORT(A, q+1, r)4

To sort array call QUICKSORT(A, 1, length[A]).

PARTITION(array A, int p, int r)

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

	T(n) = 2T(n/2)	+ n
Guess (#1)	T(n) = O(n)	
Need	T(n) <= cn	for some constant c>0
Assume	T(n/2) <= cn/2	Inductive hypothesis
Thus	T(n) <= 2cn/2 + n =	(c+1) n
	Our guess was wr	ong!!
9/11/08	COT	5407

Solving Recurrences by Substitution: 2

$$T(n) = 2T(n/2) + n$$

Guess (#2) $T(n) = O(n^2)$

Need $T(n) <= cn^2$ for some constant c>0

Assume $T(n/2) \ll cn^2/4$ Inductive hypothesis

Thus

T(n) <= 2cn²/4 + n = cn²/2+ n

Works for all n as long as c>=2 !!

But there is a lot of "slack"

Solving Recurrences by Substitution: 3

	T(n) = 2T(n/2)	!) + n
Guess (<mark>#3</mark>)	T(n) = O(nlogn)	
Need	T(n) <= cnlogn	for some constant c>0
Assume	T(n/2) <= c(n/2)(log(n/2	2)) Inductive hypothesis
Thus	T(n) <= 2 c(n/2)(log(n/2)) + n
	<= cnlogn -cn + n <=	cnlogn
	Works for all n as long	g as c>=1 ‼
	This is the correct gue	ess. WHY?
Show	T(n) >= c'nlogn	for some constant c'>0

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

29

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_{b} a e})$ for some constant e>0, then T(n) = Theta($n^{\log_{b} a}$)
- 2. If $f(n) = Theta(n^{\log_{b} a})$, then T(n) = Theta($n^{\log_{b} a} \log n$)
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then T(n) = Theta(f(n))

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?