Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

......... !r I’i - e ”

£(n) = ©(z(n)) " fn) = 0(e(n)) ") = Q)
(a) (b) ©

Figure 3.1 Graphic examples of the ©, O, and £ notations. In each part, the value of npy shown is
the minimum possible value; any greater value would also work. (a) ®-notation bounds a function to
within constant factors, We write f(n) = ®(g(n)) if there exist positive constants ng, ¢;, and 7 such
that to the right of ng, the value of f(n) always lies between ¢jg(rn) and c2¢(n) inclusive. (b) O-

if there are positive constants ny and ¢ such that to the right of np, the value of f(n) always lies on
or below cg(n). (¢) S-notation gives a lower bound for a function to within a constant factor. We
write f(n) = £2(g(n)) if there are positive constants ng and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n).

9/18/08 COT 5407 1

Show: f(n) = O(g(n)) & f(n) = O(g(n))

© To show (n) = O(g(n))
- Manipulate g(n) so that f(n) <= ¢ g(n) for some n,,.
- Then try to show that f(n) <= ¢ g(n) for all n >= n,,.

* To show f(n) = O(g(n))

- Assume an arbitrary choice for c.

- Now show that no matter what n, is chosen, it is
impossible for the following to become true as n tends to
oo: (n) <= cg(n).

9/18/08 COT 5407 2

Define f(n) = ©(g(n)) & f(n) = €2(g(n))

* f(n) = Omega(g(n)) = 2(g(n))

- If andonly if
* g(n) = O(f(n))

+ f(n) = Theta(g(n)) = ©(g(n))

- If and only if
- f(n) = O(g(n)), and
* g(n) = O(f(n))

9/18/08 COT 5407

Logarithm manipulations

Rules

- b to the power log,x equals x [log and exponentiation are inverse
functions]

- log,b* = x [log and exponentiation are inverse functions]
- log(xy) = log(x) + log(y) [log of products is sum of logs]
- log(x/y) = log(x) - log(y) [log of ratios is difference of logs]

- log(x) =y log(x) [
- aXy= (ax)y
- log,y = log,x/log,y [Change of bases is possible]

9/18/08 COT 5407 4

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2¢cn/2 + n = (c+1) n

Our guess was wrong!!

9/18/08 COT 5407 5

Solving Recurrences by Substitution:

T(n) = 2T(n/2) + n

Guess (#2) T(n) = O(n3)

Need T(n) <= cn? for some constant ¢>0
Assume T(n/2) <= cn?/4 Inductive hypothesis
Thus T(n) <= 2cn2/4 + n = cn?/2+ n

Works for all n as long as ¢c>=2 |l
But there is a lot of "slack”

9/18/08 COT 5407

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need
Assume
Thus

Show

9/18/08

T(n) <= cnlogn for some constant ¢>0
T(n/2) <= c¢(n/2)(log(n/2)) Inductive hypothesis
T(n) <= 2 c¢(n/2)(log(n/2)) + n

<= chlogn -cn + n <= cnlogn
Works for all n as long as ¢c>=1 |l
This is the correct guess. WHY?
T(n) >= c'nlogn for some constant c>0

COT 5407 7

QUICKSORT(array A,int p,int r)

1 if (p<r)

QuickSort 2 then ¢ «— PARTITION(A, p, 1)
3 QUICKSORT(A,p,q — 1)
4 QUICKSORT(A,q+ 1,r)

To sort array call QUICKSORT(A, 1, length|A]).

PARTITION(array A, int p,int r)
x — Alr] > Choose pivot
1—p—1
for j «— ptor —1
do if (A]j] <)
then i «— 1+ 1
exchange Ali] < A[j]
exchange Ali + 1] < Alr] Page 146, CLRS

return 2 + 1
9/18/08 COT 5407/ 8

B~ QO DN —

00 =] Gy O1

Analysis of QuickSort

- Average case

- T(n) <= 2T(n/2) + O(n)
- T(n) = O(n log n)

- Worst case

- T(n) = T(n-1) + O(n)
- T(n) = O(n®)

9/18/08 COT 5407

Variants of QuickSort

Choice of Pivot
- Random choice
- Median of 3

Avoiding recursion on small subarrays

- Invoking InsertionSort for small arrays

9/18/08 COT 5407

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tir) on on
T(ni2) Tinf2) cmf2 cnf2
T{ni4) Tinfd) Tin/4) Tinid)
(5] (b} (c)
\ CH e e sl O
cnf2 CHI2 wvssmsmennonailie o
| cnfd chif4 el CR4 e e en

AR

— S
L — _
i
(d) Total: cn lg n + cn
Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn.

Part (a) shows T(n), which is progressively expunded in (b)~(d) to form the recursion tree. The
fully expanded tree in part (d) has Ig s + 1 levels (i.c., it has height 1g #, as indicated), and each level
9/18/08 contributes a total cost of cn. The total cost, therefore, is o lgn + en, which is ©(n lg n).

Solving Recurrences: Recursion-tree method

Substitution method fails when a good guess is not available

Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the
children

Expand the children
Add up each level
Sum up the levels

Useful for analyzing divide-and-conquer algorithms

Also useful for generating good guesses to be used by
substitution method

9/18/08 COT 5407 12

Solving Recurrences using Master Theorem

Master Theorem:
Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(n'9,2¢) for some constant e>0, then
T(n) = Theta(n'os,°)

2. If f(n) = Theta(nles 2), then
T(n) = Theta(nlos,2 log n)

3. If f(n) = Omega(nlos,2+e) for some constant e>0, then
T(n) = Theta(f(n))

9/18/08 COT 5407 13

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond Solution
T(n)=Tn-1)4+0(1) T(n) = O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = O(n)
T(n) =T(n—c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = 0O(nlogn)

T(n) = al(n/b) T+ O(n);

T(n) =0O(nlogn)

a=1b

TG = alGa/ByF Oy [T() = 0t)
a <

T(n) =aT(n/b) + f(n), T(n) = O(n)

f(n) = O(n'°% =)

T(n) = aT(n/b) + f(n);
f(n) = O(n'9%)

T(n) = ©(n'°%2|ogn)

T(n) = aT(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%eogn)

14

Visualizing Algorithms 1

What algorithms are A and B?

Position

|

Unsorted

Sorted

15

COT 5407

9/18/08

Visualizing Algorithms 2

Position

Un.so‘rted - Sorted

9/18/08 COT 5407 16

Visualizing Comparisons 3

oo b /s

N
SIS
AN
t\

/(I RS
e
y/ 47/
/41 /I
Y /411 //A OASN
AU [P HERSs
AN s
T Za0
AV Vs
VAN 7ZA%S
AN N
AHHNIN N
VA AN N ZAN
24NN
WXV N
@ ANN 72N
N2 ANN7

FVUARANAN N
-. /.. .r. .u/ .). //./.

..-. : vl e g e o A

...._.. __._ __. _ ' __ __,._...,_,/._,. // 3 \\ \ \\\m_.‘ _._. iy ___ ..__ AN

Y
YWD
YWY
PV
AT

PRI

INKA AT

N ZZA IR
A AR
AT NY
KXY/

A AN 2
e ANNZ

I5& KL

S FATIINNNS
Sk AT

P W MINN
RS TN

N~
—

:§§§?,
KA

X
el

COT 5407

,.\w\ m /&\\ “ — _._

BEH NI
D VW
SRR/
K G
2 SR __.\“
PN K YNV

9/18/08

Sorting Algorithms

- SelectionSort

- InsertionSort
*+ BubbleSort

»+ ShakerSort
* QuickSort

- MergeSort

+ HeapSort
» Bucket & Radix Sort
- Counting Sort

9/18/08 COT 5407 18

Problems to think about!

What is the least humber of comparisons you need to sort a
list of 3 elements? 4 elements? 5 elements?

How to arrange a tennis tournament in order to find the
tournament champion with the least number of matches?
How many tennis matches are needed?

9/18/08 COT 5407 19

Storing binary trees as arrays

20| 7 [38| 4 | 16 | 37 | 43

9/18/08 COT 5407

Heaps (Max-Heap)

43 | 16 | 38| 4 | 7 | 37 | 20

43 | 16 | 38| 4 | 7 | 37 | 20| 2 3 6 1 | 30

HEAP represents a binary tree stored as an array
such that:

* Tree is filled on all levels except last

* Last level is filled from left o right

» Left & right child of i are in locations 2i and 2i+1
» HEAP PROPERTY:

o Parent value is at least as large as child's value 1

HeapSort

- First convert array into a heap (BUILD-MAX-HEAP, p133)
* Then convert heap into sorted array (HEAPSORT, p136)

9/18/08 COT 5407 22

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sortl/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/18/08 COT 5407 23

[—

HeapSort: Part 1

MAX-HEAPIFY (array A, int 1)

> Assume subtree rooted at ¢ is not a heap:
> but subtrees rooted at children of ¢ are heaps
| < LEFT[i]
r «— RIGHT|]
if ((I < heap-size|A]) and (All] > Ali]))
then largest « [
else largest < 1
if ((r < heap-size|A|]) and (Alr| > Allargest]))
then largest < r
if (largest # 1)
then exchange Ali| < Allargest]
MAX-HEAPIFY (A, largest)

O O© 00 ~J O T i W N

9/18/08 COT 5407

24

p130

HeapSort: Part 2

BUILD-MAX-HEAP(array A)

1 heap-size|A] < length|A]

2 for i < |length|A]/2] downto 1
3 do MAX-HEAPIFY (A, 1)

9/18/08 COT 5407

25

HeapSort: Part 2

BUILD-MAX-HEAP(array A)
1 heap-size|A] < length|A]
2 for i < |length|A]/2] downto 1

3

do MAX-HEAPIFY(A, 1)

HEAPSORT(array A)

1 BuiLD-MAX-HEAP(A)
2 for i < length|A] downto 2

3

i

(@

9/18/08

do exchange A[l] « Ali]
heap-size|A] < heap-size|A] — 1
MAX-HEAPIFY(A, 1)

COT 5407

O(log n)

Total:
O(nlog n)

26

Build-Max-Heap
Analysis

For the HeapSort analysis, we need to compute:

llogn] 4,

2 o

h=0

We know from the formula for geometric series that

S ok =
k=0 l1-2z
Differentiating both sides, we get
1
kx"_l i
,;, (1-2x)?

Multiplying both sides by z we get

Now replace £ = 1/2 to show that

9/18/08

{logn] h 1
2 7S 3
h=0

COT 5407

27

