
9/18/08 COT 5407 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/18/08 COT 5407 2

Show: f(n) = O(g(n)) & f(n) O(g(n))

• To show f(n) = O(g(n))

– Manipulate g(n) so that f(n) <= c g(n) for some n0.

– Then try to show that f(n) <= c g(n) for all n >= n0.

• To show f(n) O(g(n))

– Assume an arbitrary choice for c.

– Now show that no matter what n0 is chosen, it is

impossible for the following to become true as n tends to

: f(n) <= cg(n).

9/18/08 COT 5407 3

Define f(n) = (g(n)) & f(n) = (g(n))

• f(n) = Omega(g(n)) = (g(n))

– If and only if

• g(n) = O(f(n))

• f(n) = Theta(g(n)) = (g(n))

– If and only if

• f(n) = O(g(n)), and

• g(n) = O(f(n))

9/18/08 COT 5407 4

Logarithm manipulations

• Rules

– b to the power logbx equals x [log and exponentiation are inverse

functions]

– logbb
x = x [log and exponentiation are inverse functions]

– log(xy) = log(x) + log(y) [log of products is sum of logs]

– log(x/y) = log(x) - log(y) [log of ratios is difference of logs]

– log(xy) = y log(x) [

– axy = (ax)y

– logxy = logbx/logby [Change of bases is possible]

9/18/08 COT 5407 5

Solving Recurrences by Substitution

• Guess the form of the solution

• (Using mathematical induction) find the constants and show

that the solution works

Example

T(n) = 2T(n/2) + n

Guess (#1) T(n) = O(n)

Need T(n) <= cn for some constant c>0

Assume T(n/2) <= cn/2 Inductive hypothesis

Thus T(n) <= 2cn/2 + n = (c+1) n

Our guess was wrong!!

9/18/08 COT 5407 6

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)

Need T(n) <= cn2 for some constant c>0

Assume T(n/2) <= cn2/4 Inductive hypothesis

Thus T(n) <= 2cn2/4 + n = cn2/2+ n

Works for all n as long as c>=2 !!

But there is a lot of “slack”

9/18/08 COT 5407 7

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)

Need T(n) <= cnlogn for some constant c>0

Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis

Thus T(n) <= 2 c(n/2)(log(n/2)) + n

 <= cnlogn -cn + n <= cnlogn

Works for all n as long as c>=1 !!

This is the correct guess. WHY?

Show T(n) >= c’nlogn for some constant c’>0

9/18/08 COT 5407 8

Page 146, CLRS

QuickSort

9/18/08 COT 5407 9

Analysis of QuickSort

• Average case

– T(n) <= 2T(n/2) + O(n)

– T(n) = O(n log n)

• Worst case

– T(n) = T(n-1) + O(n)

– T(n) = O(n2)

9/18/08 COT 5407 10

Variants of QuickSort

• Choice of Pivot

– Random choice

– Median of 3

• Avoiding recursion on small subarrays

– Invoking InsertionSort for small arrays

9/18/08 COT 5407 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9/18/08 COT 5407 12

Solving Recurrences: Recursion-tree method

• Substitution method fails when a good guess is not available

• Recursion-tree method works in those cases

– Write down the recurrence as a tree with recursive calls as the

children

– Expand the children

– Add up each level

– Sum up the levels

• Useful for analyzing divide-and-conquer algorithms

• Also useful for generating good guesses to be used by

substitution method

9/18/08 COT 5407 13

Solving Recurrences using Master Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

T(n) = Theta(nlog
b
a)

2. If f(n) = Theta(nlog
b
a), then

T(n) = Theta(nlog
b
a log n)

3. If f(n) = Omega(nlog
b
a+e) for some constant e>0, then

T(n) = Theta(f(n))

9/18/08 COT 5407 14

9/18/08 COT 5407 15

Visualizing Algorithms 1

A

B

Position

Value

Unsorted Sorted

What algorithms are A and B?

9/18/08 COT 5407 16

Visualizing Algorithms 2
Position

Value

Unsorted Sorted

9/18/08 COT 5407 17

Visualizing Comparisons 3

9/18/08 COT 5407 18

Sorting Algorithms

• SelectionSort

• InsertionSort

• BubbleSort

• ShakerSort

• QuickSort

• MergeSort

• HeapSort

• Bucket & Radix Sort

• Counting Sort

9/18/08 COT 5407 19

Problems to think about!

• What is the least number of comparisons you need to sort a

list of 3 elements? 4 elements? 5 elements?

• How to arrange a tennis tournament in order to find the

tournament champion with the least number of matches?

How many tennis matches are needed?

9/18/08 COT 5407 20

Storing binary trees as arrays

20 7 38 4 16 37 43

9/18/08 COT 5407 21

Heaps (Max-Heap)

43 16 38 4 7 37 20

20 2 3 6 143 16 38 4 7 37 30

HEAP represents a binary tree stored as an array

such that:

• Tree is filled on all levels except last

• Last level is filled from left to right

• Left & right child of i are in locations 2i and 2i+1

• HEAP PROPERTY:

Parent value is at least as large as child’s value

9/18/08 COT 5407 22

HeapSort

• First convert array into a heap (BUILD-MAX-HEAP, p133)

• Then convert heap into sorted array (HEAPSORT, p136)

9/18/08 COT 5407 23

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

9/18/08 COT 5407 24

HeapSort: Part 1

p130

O(height of

node in

location i) =

O(log(size of

subtree))

9/18/08 COT 5407 25

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

9/18/08 COT 5407 26

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

9/18/08 COT 5407 27

Build-Max-Heap
Analysis

