

Figure 3.1 Graphic examples of the $\Theta, O$, and $\Omega$ notations. In each part, the value of $n_{0}$ shown is the minimum possible value; any greater value would also work. (a) $\Theta$-notation bounds a function to within constant factors. We write $f(n)=\Theta(g(n))$ if there exist positive constants $n_{0}, c_{1}$, and $c_{2}$ such that to the right of $n_{0}$, the value of $f(n)$ always lies between $c_{1} g(n)$ and $c_{2} g(n)$ inclusive. (b) $O$ notation gives an upper bound for a function to within a constant factor. We write $f(n)=O(g(n))$ if there are positive constants $n_{0}$ and $c$ such that to the right of $n_{0}$, the value of $f(n)$ always lies on or below $\operatorname{cg}(n)$. (c) $\Omega$-notation gives a lower bound for a function to within a constant factor. We write $f(n)=\Omega(g(n))$ if there are positive constants $n_{0}$ and $c$ such that to the right of $n_{0}$, the value of $f(n)$ always lies on or above $c g(n)$.

## Show: $f(n)=O(g(n)) \& f(n) \neq O(g(n))$

- To show $f(n)=O(g(n))$
- Manipulate $g(n)$ so that $f(n)<=c g(n)$ for some $n_{0}$.
- Then try to show that $f(n)<=c g(n)$ for all $n>=n_{0}$.
- To show $f(n) \neq O(g(n))$
- Assume an arbitrary choice for c.
- Now show that no matter what $n_{0}$ is chosen, it is impossible for the following to become true as $n$ tends to $\infty: f(n)<=c g(n)$.


## Define $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \& \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

- $f(n)=\operatorname{Omega}(g(n))=\Omega(g(n))$
- If and only if
- $g(n)=O(f(n))$
- $f(n)=\operatorname{Theta}(g(n))=\Theta(g(n))$
- If and only if
- $f(n)=O(g(n))$, and
- $g(n)=O(f(n))$


## Logarithm manipulations

- Rules
- $b$ to the power $\log _{b} x$ equals $x$
[log and exponentiation are inverse functions]
- $\log _{b} b^{x}=x \quad[\log$ and exponentiation are inverse functions]
- $\log (x y)=\log (x)+\log (y) \quad$ [log of products is sum of $\log s]$
- $\log (x / y)=\log (x)-\log (y)$ [log of ratios is difference of logs]
- $\log \left(x^{y}\right)=y \log (x) \quad[$
- $a^{x y}=\left(a^{x}\right)^{y}$
- $\log _{x} y=\log _{b} x / \log _{b} y \quad$ [Change of bases is possible]


## Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works
Example

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#1) $\quad T(n)=O(n)$

Need
Assume
Thus
for some constant c>0
$T(n / 2)<=c n / 2 \quad$ Inductive hypothesis
$T(n)<=2 c n / 2+n=(c+1) n$
Our guess was wrong!!

## Solving Recurrences by Substitution: 2

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#2) $T(n)=O\left(n^{2}\right)$

Need
Assume
Thus
$T(n)<=c n^{2}$
$T(n / 2)<=\mathrm{cn}^{2} / 4$ Inductive hypothesis
$T(n)<=2 n^{2} / 4+n=\mathrm{cn}^{2} / 2+n$
Works for all $n$ as long as $c>=2$ !!
But there is a lot of "slack"

## Solving Recurrences by Substitution: 3

$$
T(n)=2 T(n / 2)+n
$$

Guess (\#3) $T(n)=O(n \log n)$
Need $\quad T(n)<=c n l o g n \quad$ for some constant $c>0$
Assume $\quad T(n / 2)<=c(n / 2)(\log (n / 2)) \quad$ Inductive hypothesis
Thus
$T(n)<=2 c(n / 2)(\log (n / 2))+n$
<= cnlogn $-c n+n<=c n l o g n$
Works for all $n$ as long as $c>=1$ !!
This is the correct guess. WHY?
Show
$T(n)>=c^{\prime} n \log n$
for some constant c'>0

```
QuICKSort(array A, int p, int r)
1 if ( }p<r\mathrm{ )
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort ( }A,q+1,r
To sort array call QuickSort \((A, 1\), length \([A])\).
Partition(array \(A\), int \(p\), int \(r\) )
```

$1 \quad x \leftarrow A[r]$
$\triangleright$ Choose pivot

```
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
\(4 \quad\) do if \((A[j] \leq x)\) then \(i \leftarrow i+1\)
\(6 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)

\section*{Analysis of QuickSort}
- Average case
\[
\begin{aligned}
& -T(n)<=2 T(n / 2)+O(n) \\
& -T(n)=O(n \log n)
\end{aligned}
\]
- Worst case
\(-T(n)=T(n-1)+O(n)\)
- \(T(n)=O\left(n^{2}\right)\)

\section*{Variants of QuickSort}
- Choice of Pivot
- Random choice
- Median of 3
- Avoiding recursion on small subarrays
- Invoking InsertionSort for small arrays

\section*{Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}


Figure 2.5 The construction of a recursion tree for the recurrence \(T(n)=2 T(n / 2)+c n\). Part (a) shows \(T(n)\), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has \(\lg n+1\) levels (i.e., it has height \(\lg n\), as indicated), and each level contributes a total cost of \(c n\). The total cost, therefore, is \(c n \lg n+c n\), which is \(\Theta(n \lg n)\)

\section*{Solving Recurrences: Recursion-tree method}
- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
- Write down the recurrence as a tree with recursive calls as the children
- Expand the children
- Add up each level
- Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

\section*{Solving Recurrences using Master Theorem}

\section*{Master Theorem:}

Let \(a, b>=1\) be constants, let \(f(n)\) be a function, and let
\[
T(n)=a T(n / b)+f(n)
\]
1. If \(f(n)=O\left(n^{\log _{b} a-e}\right)\) for some constant \(e>0\), then
\[
T(n)=\text { Thet } a\left(n^{\log _{b} a}\right)
\]
2. If \(f(n)=\) Thet \(a\left(n^{\log _{b} a}\right)\), then
\[
T(n)=\text { Thet } a\left(n^{\log _{b} a} \log n\right)
\]
3. If \(f(n)=\) Omega \(\left(n^{\log _{b} a+e}\right)\) for some constant \(e>0\), then \(T(n)=\operatorname{Theta}(f(n))\)

\section*{Solving Recurrence Relations}

Page 62, [CLR]
\begin{tabular}{|c|c|}
\hline \hline Recurrence; Cond & Solution \\
\hline \hline\(T(n)=T(n-1)+O(1)\) & \(T(n)=O(n)\) \\
\hline\(T(n)=T(n-1)+O(n)\) & \(T(n)=O\left(n^{2}\right)\) \\
\hline\(T(n)=T(n-c)+O(1)\) & \(T(n)=O(n)\) \\
\hline\(T(n)=T(n-c)+O(n)\) & \(T(n)=O\left(n^{2}\right)\) \\
\hline\(T(n)=2 T(n / 2)+O(n)\) & \(T(n)=O(n \log n)\) \\
\hline\(T(n)=a T(n / b)+O(n) ;\) & \(T(n)=O(n \log n)\) \\
\(a=b\) & \\
\hline\(T(n)=a T(n / b)+O(n) ;\) & \(T(n)=O(n)\) \\
\(a<b\) & \\
\hline \hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=O(n)\) \\
\(f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)\) & \\
\hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=\Theta\left(n^{\log _{b} a} \log n\right)\) \\
\(f(n)=O\left(n^{\log _{b} a}\right)\) & \\
\hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=\Omega\left(n^{\log _{b} a} \log n\right)\) \\
\(f(n)=\Theta(f(n))\) & \\
\(a f(n / b) \leq c f(n)\) & \\
\hline
\end{tabular}

\section*{Visualizing Algorithms 1}


\section*{What algorithms are \(\mathbf{A}\) and \(\mathbf{B}\) ?}

\section*{Value}


\section*{Visualizing Algorithms 2}


\section*{Visualizing Comparisons 3}
\[
\rightarrow \leq \rightarrow \infty
\]

\section*{Sorting Algorithms}
- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket \& Radix Sort
- Counting Sort

\section*{Problems to think about!}
- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?

\section*{Storing binary trees as arrays}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 20 & 7 & 38 & 4 & 16 & 37 & 43 \\
\hline
\end{tabular}

\section*{Heaps (Max-Heap)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 43 & 16 & 38 & 4 & 7 & 37 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 43 & 16 & 38 & 4 & 7 & 37 & 20 & 2 & 3 & 6 & 1 & 30 \\
\hline
\end{tabular}

HEAP represents a binary tree stored as an array such that:
- Tree is filled on all levels except last
- Last level is filled from left to right
- Left \& right child of i are in locations \(2 i\) and \(2 i+1\)
- HEAP PROPERTY:

\section*{HeapSort}
- First convert array into a heap (BUILD-MAX-HEAP, p133)
- Then convert heap into sorted array (HEAPSORT, p136)

\section*{Animation Demos}
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html
http://cg.scs.carleton.ca/~morin/misc/sortalg/

\section*{HeapSort: Part 1}

Max-Heapify (array \(A\), int \(i\) )
\(\triangleright\) Assume subtree rooted at \(i\) is not a heap;
\(\triangleright\) but subtrees rooted at children of \(i\) are heaps
\(1 \quad l \leftarrow \operatorname{LEFT}[i]\)
\(2 r \leftarrow \operatorname{RIGHt}[i]\)
3 if \(((l \leq\) heap-size \([A])\) and \((A[l]>A[i]))\)

\section*{O(height of node in \\ location i) = O(log(size of}
\(4 \quad\) then largest \(\leftarrow l\)
5 else largest \(\leftarrow i\)
6 if \(((r \leq\) heap-size \([A])\) and \((A[r]>A[\) largest \(]))\)
\(7 \quad\) then largest \(\leftarrow r\)
8 if (largest \(\neq i\) )
\(9 \quad\) then exchange \(A[i] \leftrightarrow A[\) largest \(]\)

\section*{HeapSort: Part 2}
\[
\begin{array}{cc}
\text { BuILD-MAX-HEAP }(\text { array } A) \\
1 & \text { heap-size }[A] \leftarrow \text { length }[A] \\
2 & \text { for } i \leftarrow\lfloor\text { length }[A] / 2\rfloor \text { downto } 1 \\
3 & \text { do } \operatorname{Max}-\operatorname{HeAPIFY}(A, i)
\end{array}
\]

\section*{HeapSort: Part 2}
```

Build-Max-HEAP(array A)
1 heap-size [A]}\leftarrow length[A
2 for }i\leftarrow\lfloor\mathrm{ length [A]/2\ downto 1
do Max-Heapify ( }A,i

```

HeapSort(array A)
1 Build-Max-Heap \((A)\)
2 for \(i \leftarrow\) length \([A]\) downto 2
3 do exchange \(A[1] \leftrightarrow A[i]\)
\(4 \quad\) heap-size \([A] \leftarrow\) heap-size \([A]-1\)
\(5 \operatorname{Max}-\operatorname{Heapify}(A, 1)\)
\(O(\log n)\)
Total:
\(\mathrm{O}(\mathrm{nlog} \mathrm{n})\)

For the HeapSort analysis, we need to compute:

\section*{Build-Max-Heap Analysis}
\[
\cdot \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}
\]

We know from the formula for geometric series that
\[
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
\]

Differentiating both sides, we get
\[
\sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
\]

Multiplying both sides by \(x\) we get
\[
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
\]

Now replace \(x=1 / 2\) to show that
\[
\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}} \leq \frac{1}{2}
\]```

