

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or allow cg(n).

COT 5407

Show: $f(n) = O(g(n)) \& f(n) \neq O(g(n))$

- To show f(n) = O(g(n))
 - Manipulate g(n) so that $f(n) \le g(n)$ for some n_0 .
 - Then try to show that $f(n) \le g(n)$ for all $n \ge n_0$.
- To show $f(n) \neq O(g(n))$
 - Assume an arbitrary choice for c.
 - Now show that no matter what n₀ is chosen, it is impossible for the following to become true as n tends to ∞: f(n) <= cg(n).

Define $f(n) = \Theta(g(n)) \& f(n) = \Omega(g(n))$

- $f(n) = Omega(g(n)) = \Omega(g(n))$
 - If and only if
 - g(n) = O(f(n))
- $f(n) = Theta(g(n)) = \Theta(g(n))$
 - If and only if
 - f(n) = O(g(n)), and
 - g(n) = O(f(n))

Logarithm manipulations

• Rules

- b to the power log_b × equals × [log and exponentiation are inverse functions]
- log_bb^x = x [log and exponentiation are inverse functions]
- log(xy) = log(x) + log(y) [log of products is sum of logs]
- log(x/y) = log(x) log(y) [log of ratios is difference of logs]
- $-\log(x^{y}) = y\log(x)$
- $a^{xy} = (a^x)^y$
- $\log_x y = \log_b x / \log_b y$ [Change of bases is possible]

Γ

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

	T(n) = 2T(n/2)	+ n
Guess (#1)	T(n) = O(n)	
Need	T(n) <= cn	for some constant c>0
Assume	T(n/2) <= cn/2	Inductive hypothesis
Thus	T(n) <= 2cn/2 + n =	(c+1) n
	Our guess was wr	ong!!
9/18/08	СОТ	5407

Solving Recurrences by Substitution: 2

$$T(n) = 2T(n/2) + n$$

Guess (#2) $T(n) = O(n^2)$

Need $T(n) <= cn^2$ for some constant c>0

Assume $T(n/2) \ll cn^2/4$ Inductive hypothesis

Thus

T(n) <= 2cn²/4 + n = cn²/2+ n

Works for all n as long as c>=2 !!

But there is a lot of "slack"

Solving Recurrences by Substitution: 3

	T(n) = 2T(n/2)) + n
Guess (<mark>#3</mark>)	T(n) = O(nlogn)	
Need	T(n) <= cnlogn	for some constant c>0
Assume	T(n/2) <= c(n/2)(log(n/2))) Inductive hypothesis
Thus	T(n) <= 2 c(n/2)(log(n/2)) + n
	<= cnlogn -cn + n <= d	cnlogn
	Works for all n as long	as c>=1 !!
	This is the correct gue	ss. WHY?
Show	T(n) >= c'nlogn	for some constant c'>0

QuickSort

QUICKSORT(array A, int p, int r) if (p < r)1 $\mathbf{2}$ then $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1)3 QUICKSORT(A, q+1, r)4

To sort array call QUICKSORT(A, 1, length[A]).

PARTITION(array A, int p, int r)

8

Analysis of QuickSort

- Average case
 - $T(n) \le 2T(n/2) + O(n)$
 - $T(n) = O(n \log n)$
- Worst case
 - T(n) = T(n-1) + O(n)
 - $T(n) = O(n^2)$

Variants of QuickSort

- Choice of Pivot
 - Random choice
 - Median of 3
- Avoiding recursion on small subarrays
 - Invoking InsertionSort for small arrays

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

9/18/08

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_{b} a e})$ for some constant e>0, then T(n) = Theta($n^{\log_{b} a}$)
- 2. If $f(n) = Theta(n^{\log_{b} a})$, then T(n) = Theta($n^{\log_{b} a} \log n$)
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then T(n) = Theta(f(n))

Solving Recurrence Relations

Page 62, [CLR]

	Calution
Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	
$af(n/b) \le cf(n)$	

14

Visualizing Algorithms 1

Position

What algorithms are A and B?

15

Value

COT 5407

9/18/08

9/18/08

Visualizing Comparisons 3

VAINA XX XAI 1/A NA XX XXI	VANA XX XAI ~ //A MA XX XI	AMMINIX AN NIAMAN XXI	A MAN HARAN IN HANNIA	A ANN ILARAN I WANTAN INA ILAN	INNIN INNIN INNIN INNIN INNIN INNI	AN ILLARAN CONTACT IN MANUTAL	MITHINIAN AND AND AND AND AND AND AND AND AND A	THILLING A MALLING AND AND A MALLING AND AND AND A MALLING AND	MITHINKI IN SAME A MITHIN TO AN		WITH WITH AND A STATE OF A STATE	AND THE REPORT OF THE PARTY OF	WHITH HE WAS A WITH HAVE	ANTHUR DEPARTMENT AND A DE	AIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AND DESCRIPTION AND AND AND AND AND AND AND AND AND AN	Som The Fight of Some Some statements	Rodding WARS. Also ditte daawee.	
A INA XX XVI	A MAN WAY	A. IA. A. A	A NAL AL AN	1 1 X X 11 X	11 N N N N	HIMAN AV AVI		. /\\X\?/\\X\!!!!	IIIIIX XX XVI	WIIIIX XX XVI	WIIIIW AV		NATION AND AND AND AND AND AND AND AND AND AN	NA 11/14 XVI		NAN HULLINK	XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		

9/18/08

COT 5407

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket & Radix Sort
- Counting Sort

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?

Storing binary trees as arrays

20	7	38	4	16	37	43
----	---	----	---	----	----	----

Heaps (Max-Heap)

43	16	38	4	7	37	20
----	----	----	---	---	----	----

43	16	38	4	7	37	20	2	3	6	1	30
----	----	----	---	---	----	----	---	---	---	---	----

HEAP represents a binary tree stored as an array such that:

- Tree is filled on all levels except last
- Last level is filled from left to right
- Left & right child of i are in locations 2i and 2i+1
- <u>HEAP PROPERTY</u>:
- ⁹ Parent value is at least as large as child's value ¹

HeapSort

- First convert array into a heap (BUILD-MAX-HEAP, p133)
- Then convert heap into sorted array (HEAPSORT, p136)

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

HeapSort: Part 1

 $\textbf{Max-Heapify}(array \; A, int \; i)$

- \triangleright Assume subtree rooted at *i* is not a heap;
- \triangleright but subtrees rooted at children of *i* are heaps
- 1 $l \leftarrow \text{Left}[i]$

2
$$r \leftarrow \text{Right}[i]$$

3 if
$$((l \leq heap-size[A]) and (A[l] > A[i]))$$

- 4 then $largest \leftarrow l$
- 5 else $largest \leftarrow i$
- $6 \quad \text{if } ((r \leq heap\text{-}size[A]) \ and \ (A[r] > A[largest])) \\$
- 7 **then** $largest \leftarrow r$
- 8 **if** $(largest \neq i)$
- 9 **then** exchange $A[i] \leftrightarrow A[largest]$
- 10 Max-Heapify(A, largest)

O(height of node in location i) = O(log(size of subtree))

p130

HeapSort: Part 2

Build-Max-Heap $(array \ A)$

- $1 \quad heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

HeapSort: Part 2

Build-Max-Heap($array \; A)$

- $1 \quad heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

 $\operatorname{HeapSort}(array \ A)$

1 BUILD-MAX-HEAP(A) 2 **for** $i \leftarrow length[A]$ **downto** 2 3 **do** exchange $A[1] \leftrightarrow A[i]$ 4 $heap-size[A] \leftarrow heap-size[A] - 1$ O(log n) 5 MAX-HEAPIFY(A, 1) O(log n) For the HeapSort analysis, we need to compute:

Build-Max-Heap Analysis

 $\cdot \quad \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$

We know from the formula for geometric series that

 $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$

Differentiating both sides, we get

 $\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$

Multiplying both sides by x we get

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Now replace x = 1/2 to show that

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \frac{1}{2}$$

9/18/08