```
QuIckSort(array A, int p, int r)
1 if ( }p<r\mathrm{ )
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort ( }A,q+1,r
To sort array call QuickSort \((A, 1\), length \([A])\).
Partition(array \(A\), int \(p\), int \(r\) )
```

$1 \quad x \leftarrow A[r]$
\triangleright Choose pivot

```
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
\(4 \quad\) do if \((A[j] \leq x)\) then \(i \leftarrow i+1\)
\(6 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
Page 146, CLRS
8 return \(i+1\)

\section*{Analysis of QuickSort}
- Average case
- \(T(n)<=2 T(n / 2)+O(n)\)
- \(T(n)=O(n \log n)\)
- Worst case
\(-T(n)=T(n-1)+O(n)\)
- \(T(n)=O\left(n^{2}\right)\)
- "IN PLACE" sorting algorithm
- Which sorting algorithm is not an "IN PLACE" sorting algorithm?

\section*{Solving Recurrence Relations}

Page 62, [CLR]
\begin{tabular}{|c|c|}
\hline \hline Recurrence; Cond & Solution \\
\hline \hline\(T(n)=T(n-1)+O(1)\) & \(T(n)=O(n)\) \\
\hline\(T(n)=T(n-1)+O(n)\) & \(T(n)=O\left(n^{2}\right)\) \\
\hline\(T(n)=T(n-c)+O(1)\) & \(T(n)=O(n)\) \\
\hline\(T(n)=T(n-c)+O(n)\) & \(T(n)=O\left(n^{2}\right)\) \\
\hline\(T(n)=2 T(n / 2)+O(n)\) & \(T(n)=O(n \log n)\) \\
\hline\(T(n)=a T(n / b)+O(n) ;\) & \(T(n)=O(n \log n)\) \\
\(a=b\) & \\
\hline\(T(n)=a T(n / b)+O(n) ;\) & \(T(n)=O(n)\) \\
\(a<b\) & \\
\hline \hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=O(n)\) \\
\(f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right)\) & \\
\hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=\Theta\left(n^{\log _{b} a} \log n\right)\) \\
\(f(n)=O\left(n^{\log _{b} a}\right)\) & \\
\hline\(T(n)=a T(n / b)+f(n) ;\) & \(T(n)=\Omega\left(n^{\log _{b} a} \log n\right)\) \\
\(f(n)=\Theta(f(n))\) & \\
\(a f(n / b) \leq c f(n)\) & \\
\hline
\end{tabular}

\section*{Sorting Algorithms}
- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket \& Radix Sort
- Counting Sort

\section*{HeapSort}
- First convert array into a heap (BUILD-MAX-HEAP, p133)
- Then convert heap into sorted array (HEAPSORT, p136)

\section*{Storing binary trees as arrays}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 20 & 7 & 38 & 4 & 16 & 37 & 43 \\
\hline
\end{tabular}

\section*{Heaps (Max-Heap)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 43 & 16 & 38 & 4 & 7 & 37 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 43 & 16 & 38 & 4 & 7 & 37 & 20 & 2 & 3 & 6 & 1 & 30 \\
\hline
\end{tabular}

HEAP represents a binary tree stored as an array such that:
- Tree is filled on all levels except last
- Last level is filled from left to right
- Left \& right child of i are in locations \(2 i\) and \(2 i+1\)
- HEAP PROPERTY:

Parent value is at least as large as child's value

\section*{HeapSort: Part 1}

Max-Heapify (array \(A\), int \(i\) )
\(\triangleright\) Assume subtree rooted at \(i\) is not a heap;
\(\triangleright\) but subtrees rooted at children of \(i\) are heaps
\(1 \quad l \leftarrow \operatorname{LEFT}[i]\)
\(2 r \leftarrow \operatorname{RIGHT}[i]\)
3 if \(((l \leq\) heap-size \([A])\) and \((A[l]>A[i]))\)

\section*{O(height of node in \\ location i) = O(log(size of subtree))}

\(4 \quad\) then largest \(\leftarrow l\)
5 else largest \(\leftarrow i\)
6 if \(((r \leq\) heap-size \([A])\) and \((A[r]>A[\) largest \(]))\)
\(7 \quad\) then largest \(\leftarrow r\)
8 if (largest \(\neq i\) )
\(9 \quad\) then exchange \(A[i] \leftrightarrow A[\) largest \(]\)

\section*{HeapSort: Part 2}
\[
\begin{array}{cc}
\text { BuILD-MAX-HEAP }(\text { array } A) \\
1 & \text { heap-size }[A] \leftarrow \text { length }[A] \\
2 & \text { for } i \leftarrow\lfloor\text { length }[A] / 2\rfloor \text { downto } 1 \\
3 & \text { do } \operatorname{Max}-\operatorname{HeAPIFY}(A, i)
\end{array}
\]

\section*{HeapSort: Part 2}
```

Build-Max-HEAP(array A)
1 heap-size [A]}\leftarrow length[A
2 for }i\leftarrow\lfloor\mathrm{ length [A]/2\ downto 1
do Max-Heapify (}A,i

```

HeapSort(array A)
1 Build-Max-Heap \((A)\)
2 for \(i \leftarrow\) length \([A]\) downto 2
3 do exchange \(A[1] \leftrightarrow A[i]\)
\(4 \quad\) heap-size \([A] \leftarrow\) heap-size \([A]-1\)
\(5 \operatorname{Max}-\operatorname{Heapify}(A, 1)\)
\(O(\log n)\)
Total:
\(\mathrm{O}(\mathrm{nlog} \mathrm{n})\)

For the HeapSort analysis, we need to compute:

\section*{Build-Max-Heap Analysis}
\[
\cdot \sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}
\]

We know from the formula for geometric series that
\[
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
\]

Differentiating both sides, we get
\[
\sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
\]

Multiplying both sides by \(x\) we get
\[
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
\]

Now replace \(x=1 / 2\) to show that
\[
\sum_{h=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}} \leq \frac{1}{2}
\]

\section*{Visualizing Algorithms 1}


\section*{What algorithms are \(\mathbf{A}\) and B ?}

\section*{Value}


\section*{Visualizing Algorithms 2}


\section*{Visualizing Comparisons 3}

\section*{Animations}
- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
- time complexities on best, worst and average case
- http://vision.bc.edu/~dmartin/teaching/sorting/animhtml/quick3.html
- runs on almost sorted, reverse, random, and unique inputs; shows code with invariants
- http://www.brian-borowski.com/Sorting/
- comparisons, movements \& stepwise animations with user data
- http://maven.smith.edu/~thiebaut/java/sort/demo.html
- comparisons \& data movements and step by step execution

\section*{Problems to think about!}
- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?```

