HeapSort: Part 1

 $\textbf{Max-Heapify}(array \; A, int \; i)$

- \triangleright Assume subtree rooted at *i* is not a heap;
- \triangleright but subtrees rooted at children of *i* are heaps
- 1 $l \leftarrow \text{Left}[i]$

2
$$r \leftarrow \text{Right}[i]$$

- 3 if $((l \leq heap-size[A]) and (A[l] > A[i]))$
- 4 then $largest \leftarrow l$
- 5 else $largest \leftarrow i$
- $6 \quad \text{if } ((r \leq heap\text{-}size[A]) \ and \ (A[r] > A[largest])) \\$
- 7 **then** $largest \leftarrow r$
- 8 **if** $(largest \neq i)$
- 9 **then** exchange $A[i] \leftrightarrow A[largest]$
- 10 Max-Heapify(A, largest)

O(height of node in location i) = O(log(size of subtree))

p130

1

HeapSort: Part 2

Build-Max-Heap $(array \ A)$

- $1 \quad heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 do Max-Heapify(A, i)

For the HeapSort analysis, we need to compute:

Build-Max-Heap Analysis

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$

We know from the formula for geometric series that

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Differentiating both sides, we get

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

Multiplying both sides by x we get

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Now replace x = 1/2 to show that

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \frac{1}{2}$$

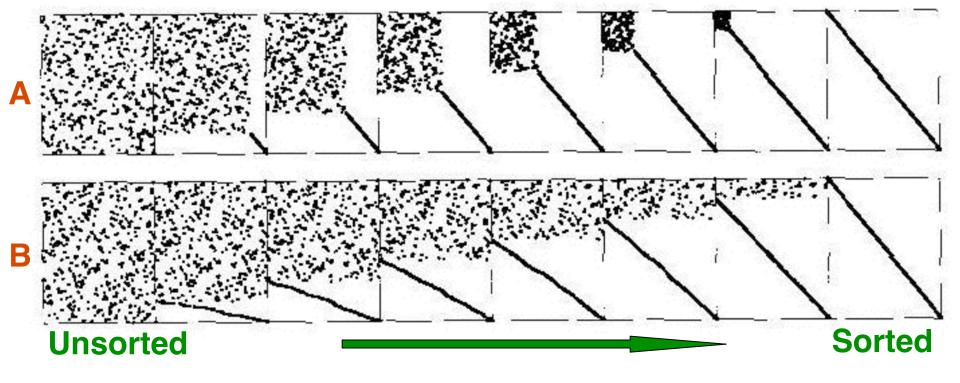
COT 5407

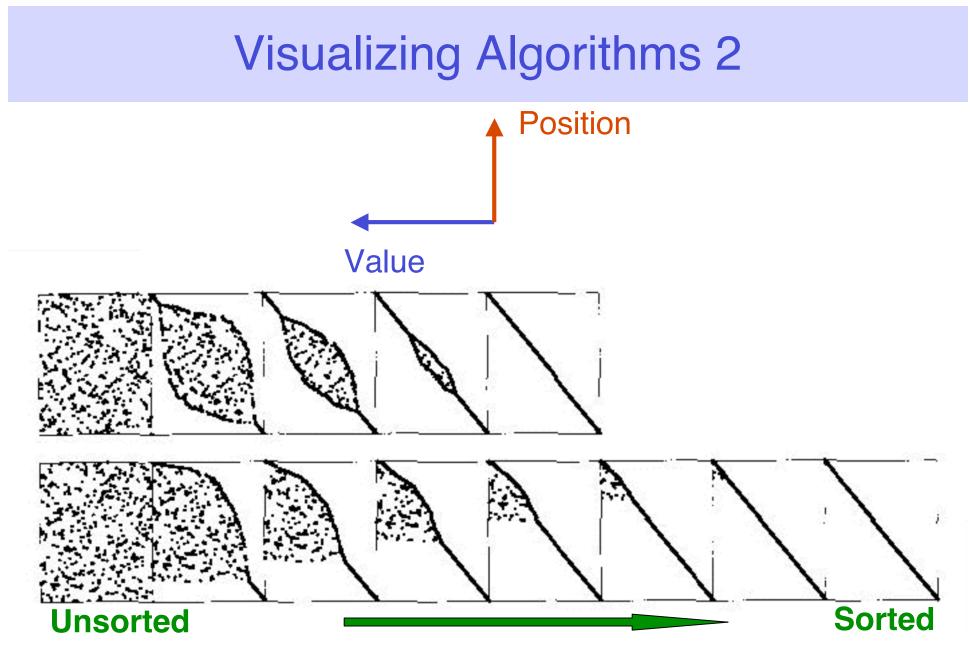
Visualizing Algorithms 1

Position

What algorithms are A and B?

Value





Visualizing Comparisons 3

114 NN X X 1 / 114 NN X X 1 / 114 NN X X 1 / 114 NN X X 1	//////////////////////////////////////			
1/14/11/14/24/1 1/14/11/14/24/1 1/14/11/14/24/1	WX/17/1/ W1X WX/17/1/ W1X WX/17/1/ W1X	PIRTATI IN ANALYSIS	//////////////////////////////////////	
1111 111 111 111 111 111 111 111 111 1	1111/11/11/2017 2017 1111/11/2017 2017 1111/11/2017 2017			

Animations

- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
 - time complexities on best, worst and average case
- http://vision.bc.edu/~dmartin/teaching/sorting/animhtml/quick3.html
 - runs on almost sorted, reverse, random, and unique inputs; shows code with invariants
- http://www.brian-borowski.com/Sorting/
 - comparisons, movements & stepwise animations with user data
- http://maven.smith.edu/~thiebaut/java/sort/demo.html
 - comparisons & data movements and step by step execution

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- QuickSort
- MergeSort
- HeapSort
- Bucket & Radix Sort
- Counting Sort

Upper and Lower Bounds

- Define an upper bound on the time complexity of a problem. The <u>upper bound</u> on the time complexity of a problem is T(n) if \exists an algorithm that solves the problem with time complexity O(T(n)).
- Clearly upper bound on the time complexity for sorting is O(n log n).
- Define a lower bound on the time complexity of a problem. The <u>lower bound</u> on the time complexity of a problem is T(n) if ∀ algorithms that solve the problem, their time complexity is Ω(T(n)).
- It can be proved that the upper bound is tight! In other words, it can be mathematically proved that the lower bound for sorting is $\Omega(n \log n)$.

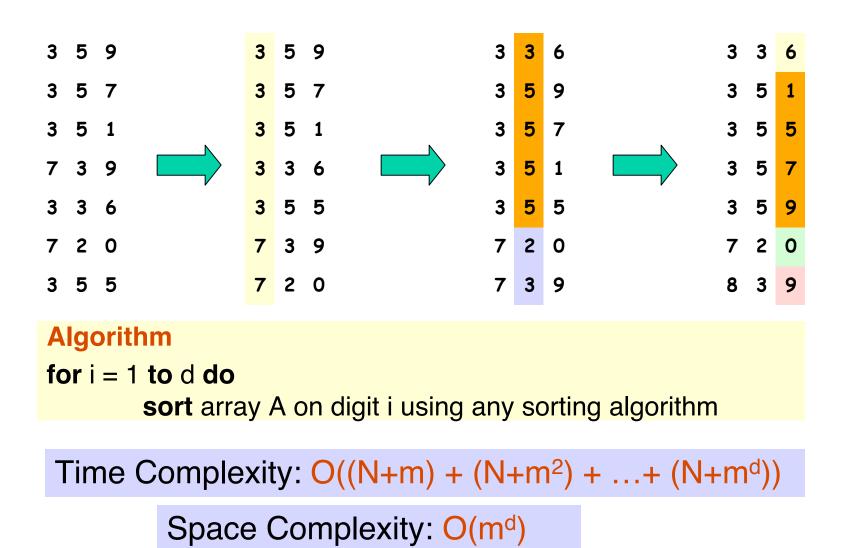
Bucket Sort

- N values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
 - Make m buckets [a..a+m-1]
 - As you read elements throw into appropriate bucket
 - Output contents of buckets [0..m] in that order
- Time O(N+m)

Stable Sort

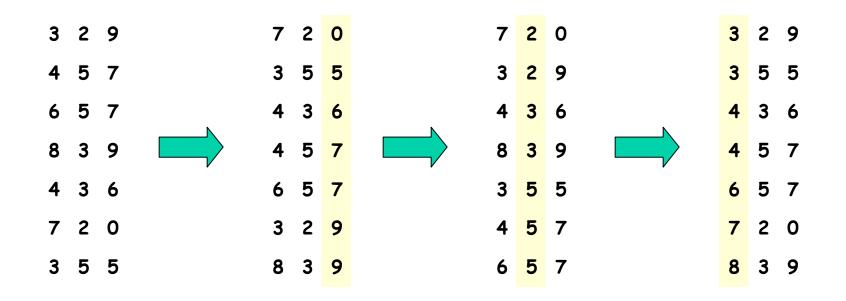
- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!

Radix Sort



COT 5407

Radix Sort



Algorithm

for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

COT 5407

Counting Sort

Traitial A mary	1	ć	2	3	4		5	6	7	•	8
Initial Array	2	5	5	3	0		2	3	С)	3
Counts		0	1		2	3	4	•	5		
		2	0		2	3	0		1		
						1				1	
Cumulative		0	1		2	3	4	4	5		
Counts		2	2	2	4	7	-	7	8		

External Sorting Methods

- Assumptions:
 - data is too large to be held in main memory;
 - data is read or written in blocks;
 - 1 or more external devices available for sorting
- Sorting in main memory is cheap or free
- Read/write costs are the dominant cost
- Wide variety of storage types and costs
- No single strategy works for all cases

External Merge Sort

- Initial distribution pass
- Several multi-way merging passes

ASORTINGANDMERGINGEXAMPLEWITHFORTYFIVERECORDS.\$

AOS.DMN.AEX.FHT.ERV.\$

IRT.EGR.LMP.ORT.CEO.\$

AGN.GIN.EIW.FIY.DRS.\$

AAGINORST.FFHIORTTY.\$

DEGGIMNNR.CDEEORRSV.\$

AEEILMPWX.\$

AAADEEEGGGIIILMMNNNOPRRSTWX.

CDEEFFHIOORRRSTTVY.\$

With 2P external devices Space for M records in main memory Sorting N records needs $1 + \log_P(N/M)$ passes

AAACDDEEEEFFGGGHIIIILMMNNNOOOPRRRRRSSTTTWXY.\$