Exam Dates (Tentative)

- Midterm
- Final Exam

October 9
December 11 (??)

- Homework Assignments
- Sep 11, Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18
- Quizzes
- Sep 23, Oct 2, Oct 14, Oct 23, Nov 4, Nov 18,
- Semester Project

October 1

Visualizing Comparisons 3

$$
\rightarrow \leq \rightarrow \infty
$$

Animations

- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
- time complexities on best, worst and average case
- http://vision.bc.edu/~dmartin/teaching/sorting/animhtml/quick3.html
- runs on almost sorted, reverse, random, and unique inputs; shows code with invariants
- http://www.brian-borowski.com/Sorting/
- comparisons, movements \& stepwise animations with user data
- http://maven.smith.edu/~thiebaut/java/sort/demo.html
- comparisons \& data movements and step by step execution

Upper and Lower Bounds

- Define an upper bound on the time complexity of a problem. The upper bound on the time complexity of a problem is $T(n)$ if \exists an algorithm that solves the problem with time complexity $O(T(n))$.
- Clearly upper bound on the time complexity for sorting is $O(n \log n)$.
- Define a lower bound on the time complexity of a problem. The lower bound on the time complexity of a problem is $T(n)$ if \forall algorithms that solve the problem, their time complexity is $\Omega(T(n))$.
- It can be proved that the upper bound is tight! In other words, it can be mathematically proved that the lower bound for sorting is $\Omega(n \log n)$.

Bucket Sort

- N values in the range [a.. $a+m-1$]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
- Make m buckets [a.. $a+m-1$]
- As you read elements throw into appropriate bucket
- Output contents of buckets [0..m] in that order
- Time $\mathrm{O}(\mathrm{N}+\mathrm{m})$

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!

Radix Sort

3	5	9	3	5	9	3	3	6	3	3	6
3	5	7	3	5	7	3	5	9	3	5	1
3	5	1	3	5	1	3	5	7	3	5	5
7	3	9	3	3	6	3	5	1	3	5	7
3	3	6	3	5	5	3	5	5	3	5	9
7	2	0	7	3	9	7	2	0	7	2	0
3	5	5	7	2	0	7	3	9	8	3	9

Algorithm

for $\mathrm{i}=1$ to d do
sort array A on digit i using any sorting algorithm
Time Complexity: $\mathrm{O}\left((\mathrm{N}+\mathrm{m})+\left(\mathrm{N}+\mathrm{m}^{2}\right)+\ldots+\left(\mathrm{N}+\mathrm{m}^{\mathrm{d}}\right)\right)$
Space Complexity: $O\left(m^{d}\right)$

Radix Sort

3	2	9	7	2	0	7	2	0	3	2	9
4	5	7	3	5	5	3	2	9	3	5	5
6	5	7	4	3	6	4	3	6	4	3	6
8	3	9	4	5	7	8	3	9	4	5	7
4	3	6	6	5	7	3	5	5	6	5	7
7	2	0	3	2	9	4	5	7	7	2	0
3	5	5	8	3	9	6	5	7	8	3	9

Algorithm

for $\mathrm{i}=1$ to d do
sort array A on digit i using a stable sort algorithm
Time Complexity: $\mathrm{O}((\mathrm{n}+\mathrm{m}) \mathrm{d})$

Counting Sort

Initial Array

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

Counts | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

Cumulative Counts

0	1	2	3	4	5
2	2	4	7	7	8

External Sorting Methods

- Assumptions:
- data is too large to be held in main memory;
- data is read or written in blocks;
- 1 or more external devices available for sorting
- Sorting in main memory is cheap or free
- Read/write costs are the dominant cost
- Wide variety of storage types and costs
- No single strategy works for all cases

External Merge Sort

- Initial distribution pass
- Several multi-way merging passes

ASORTINGANDMERGINGEXAMPLEWITHFORTYFIVERECORDS. \$
AOS .DMN. AEX. FHT .ERV. \$
IRT.EGR.LMP. ORT.CEO. $\$$
AGN.GIN.EIW.FIY.DRS.\$
AAGINORST.FFHIORTTY.\$
DEGGIMNNR.CDEEORRSV. $\$$
AEEILMPWX. \$

With 2P external devices
Space for M records in main memory Sorting N records needs
$1+\log _{\mathrm{P}}(\mathrm{N} / \mathrm{M})$ passes

AAADEEEGGGIIILMMNNNOPRRSTWX. \$
CDEEFFHIOORRRSTTVY. $\$$
AAACDDEEEEEFFGGGHIIIILMMNNNOOOPRRRRRSSTTTWXY. \$

Problems to think about!

- What is the least number of comparisons you need to sort a list of 3 elements? 4 elements? 5 elements?
- How to arrange a tennis tournament in order to find the tournament champion with the least number of matches? How many tennis matches are needed?

Order Statistics

- Maximum, Minimum n-1 comparisons

7	3	1	9	4	8	2	5	0	6

- MinMax
- 2(n-1) comparisons
- 3n/2 comparisons
- Max and 2ndMax
- $(n-1)+(n-2)$ comparisons
- ???

k-Selection; Median

- Select the k-th smallest item in list
- Naïve Solution
- Sort;
- pick the k-th smallest item in sorted list.
$O(n \log n)$ time complexity
- Randomized solution: Average case O(n)
- Improved Solution: worst case O(n)

```
QuICKSort(array A, int p, int r)
1 if ( }p<r\mathrm{ )
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort ( }A,q+1,r
To sort array call QuickSort \((A, 1\), length \([A])\).
Partition(array \(A\), int \(p\), int \(r\) )
```

$1 \quad x \leftarrow A[r]$
\triangleright Choose pivot

```
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
\(4 \quad\) do if \((A[j] \leq x)\) then \(i \leftarrow i+1\)
\(6 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)

\section*{RandomizedPartition}
- RandomizedPartition picks the pivot uniformly at random from among the elements in the list to be partitioned.

\section*{Homework}
- Statement of Collaboration
- Take it seriously.
- Reproduce the statement faithfully and sign it by hand.
- For each problem, explain separately the sources and your collaborations with other people.
- Your homework will not be graded without the signed statement.
- Extra Credit Problem
- You can turn it in any time until second last class day (Dec 4th).
- You may retry a problem, but don't waste my time.
- You will not get partial credit on an extra credit problem.
- Put it on a separate sheet of paper and label it appropriately.

\section*{QuickSelect: a variant of QuickSort}

QuickSelect(array \(A\), int \(k\), int \(p\), int \(r\) )
\(\triangleright\) Select \(k\)-th largest in subarray \(A[p . r]\)
1
if \((p=r)\)
then return \(A[p]\)
\(q \leftarrow \operatorname{Partition}(A, p, r)\)
\(i \leftarrow q-p+1 \quad \triangleright\) Compute rank of pivot
if \((i=k)\)
then return \(A[q]\)
if \((i>k)\)
then return QuickSelect \((A, k, p, q)\)
else return QuickSelect \((A, k-i, q+1, r)\)

\section*{k-Selection \& Median: Improved Algorithm}
- Start with initial array


\section*{k-Selection \& Median: Improved Algorithm(Cont'd)}
- Use median of medians as pivot

- \(T(n)<O(n)+T(n / 5)+T(3 n / 4)\)

\section*{ImprovedSelect}

ImprovedSelect (array \(A\), int \(k\), int \(p\), int \(r\) )
\(\triangleright\) Select \(k\)-th largest in subarray \(A[p . . r]\)
\[
\text { if }(p=r)
\]
then return \(A[p]\)
else \(N \leftarrow r-p+1\)
Partition \(A[p . . r]\) into subsets of 5 elements and collect all medians of subsets in \(B[1 . .\lceil N / 5\rceil]\).
5 Pivot \(\leftarrow \operatorname{ImprovedSelect}(B, 1,\lceil N / 5\rceil,\lceil N / 10\rceil\)
\(6 \quad q \leftarrow\) PivotPartition \((A, p, r\), Pivot \()\)
\(7 \quad i \leftarrow q-p+1 \quad \triangleright\) Compute rank of pivot
8 if \((i=k)\)
9 then return \(A[q]\)
10 if \((i>k)\)
11 then return \(\operatorname{ImprovedSelect}(A, k, p, q-1)\)
12 else return \(\operatorname{ImprovedSelect}(A, k-i, q+1, r)\)

\section*{PivotPartition}

PivotPartition (array \(A\), int \(p\), int \(r\), item Pivot)
\(\triangleright\) Partition using provided Pivot
\(1 \quad i \leftarrow p-1\)
2 for \(j \leftarrow p\) to \(r\)
3 do if \((A[j] \leq\) Pivot \()\)
\(4 \quad\) then \(i \leftarrow i+1\)
5 exchange \(A[i] \leftrightarrow A[j]\)
6 return \(i+1\)```

