Order Statistics

- Maximum, Minimum n-1 comparisons

7	3	1	9	4	8	2	5	0	6

- MinMax
- 2(n-1) comparisons
- 3n/2 comparisons
- Max and 2ndMax
- $(n-1)+(n-2)$ comparisons
- ???

k-Selection; Median

- Select the k-th smallest item in list
- Naïve Solution
- Sort;
- pick the k-th smallest item in sorted list.
$O(n \log n)$ time complexity
- Randomized solution: Average case O(n)
- Improved Solution: worst case O(n)

```
QuICKSort(array A, int p, int r)
1 if ( }p<r\mathrm{ )
2 then q}\leftarrow\operatorname{Partition (A,p,r)
QuickSort (A,p,q-1)
4 QuickSort ( }A,q+1,r
To sort array call QuickSort \((A, 1\), length \([A])\).
Partition(array \(A\), int \(p\), int \(r\) )
```

$1 \quad x \leftarrow A[r]$
\triangleright Choose pivot

```
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
\(4 \quad\) do if \((A[j] \leq x)\) then \(i \leftarrow i+1\)
\(6 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)

\section*{RandomizedPartition}
- RandomizedPartition picks the pivot uniformly at random from among the elements in the list to be partitioned.

\section*{Homework}
- Statement of Collaboration
- Take it seriously.
- Reproduce the statement faithfully and sign it by hand.
- For each problem, explain separately the sources and your collaborations with other people.
- Your homework will not be graded without the signed statement.
- Extra Credit Problem
- You can turn it in any time until second last class day (Dec 4th).
- You may retry a problem, but don't waste my time.
- You will not get partial credit on an extra credit problem.
- Put it on a separate sheet of paper and label it appropriately.

\section*{QuickSelect: a variant of QuickSort}

QuickSelect(array \(A\), int \(k\), int \(p\), int \(r\) )
\(\triangleright\) Select \(k\)-th largest in subarray \(A[p . . r]\)
1
if \((p=r)\)
then return \(A[p]\)
\(q \leftarrow \operatorname{Partition}(A, p, r)\)
\(i \leftarrow q-p+1 \quad \triangleright\) Compute rank of pivot
if \((i=k)\)
then return \(A[q]\)
if \((i>k)\)
then return QuickSelect \((A, k, p, q)\)
else return QuickSelect \((A, k-i, q+1, r)\)

\section*{k-Selection \& Median: Improved Algorithm}
- Start with initial array


\section*{k-Selection \& Median: Improved Algorithm(Cont'd)}
- Use median of medians as pivot

- \(T(n)<O(n)+T(n / 5)+T(3 n / 4)\)

\section*{ImprovedSelect}

ImprovedSelect (array \(A\), int \(k\), int \(p\), int r)
\(\triangleright\) Select \(k\)-th largest in subarray \(A[p . . r]\)
\[
\text { if }(p=r)
\]
then return \(A[p]\)
else \(N \leftarrow r-p+1\)
Partition \(A[p . . r]\) into subsets of 5 elements and collect all medians of subsets in \(B[1 . .\lceil N / 5\rceil]\).
5 Pivot \(\leftarrow \operatorname{ImprovedSelect}(B, 1,\lceil N / 5\rceil,\lceil N / 10\rceil\)
\(6 \quad q \leftarrow\) PivotPartition \((A, p, r\), Pivot \()\)
\(7 \quad i \leftarrow q-p+1 \quad \triangleright\) Compute rank of pivot
8 if \((i=k)\)
9 then return \(A[q]\)
10 if \((i>k)\)
11 then return \(\operatorname{ImprovedSelect}(A, k, p, q-1)\)
12 else return \(\operatorname{ImprovedSelect}(A, k-i, q+1, r)\)

\section*{PivotPartition}

PivotPartition (array \(A\), int \(p\), int \(r\), item Pivot)
\(\triangleright\) Partition using provided Pivot
\(1 \quad i \leftarrow p-1\)
2 for \(j \leftarrow p\) to \(r\)
3 do if \((A[j] \leq\) Pivot \()\)
\(4 \quad\) then \(i \leftarrow i+1\)
\(5 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
6 return \(i+1\)

\section*{Analysis of ImprovedSelect}

Number of elements greater than "median of medians" is at least
\[
3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6
\]

Why?
Our recurrence is given by:
\[
T(n)=O(n)+T(\lceil n / 5\rceil)+T(3 n / 4)
\]

Thus there exists a positive constant \(a\) such that
\[
T(n) \leq a n+T(\lceil n / 5\rceil)+T(3 n / 4)
\]

Using the substitution method, let's guess that \(T(n)=O(n)\), i.e., \(T(n) \leq c n\). Then we need to show that
\[
a n+c\lceil n / 5\rceil+c(3 n / 4) \leq c n
\]

What positive values of \(c\) and \(n_{0}\) would enforce the above inequality?
When \(n>70\), and choosing \(c \geq 20 a\) will satisfy above inequality.

\section*{Data Structure Evolution}
- Standard operations on data structures
- Search
- Insert
- Delete
- Linear Lists
- Implementation: Arrays (Unsorted and Sorted)
- Dynamic Linear Lists
- Implementation: Linked Lists
- Dynamic Trees
- Implementation: Binary Search Trees```

