Exam: Lessons to be learnt

- $(\log n)^{2} \neq \log \left(n^{2}\right)$
- If $A>C$ and $B>D$, then $A+B>C+D$
- To disprove $A+B>C+D$
- it is not enough to show that $A<=C$ or $B<=D$
- it is enough to show that $A \ll C$ and $B<=D$
- $10 / 9$ < $5 / 4$
- because $10 / 9=40 / 36$, while $5 / 4=45 / 36$
- $\log _{b} a=1$ if $a=b$
- $\log _{b} a<1$ if $a<b$
- $\log _{b} a>1$ if $a>b$
- Time complexity (\#3) is written in terms of n and k because no relationship is known between n and k other than the simple $k<=n$.
- Time complexity (\#4) is written in terms of only n because a relationship between n and k is provided.

Exam: Lessons to be learnt

- Real numbers are infinite precision numbers and in some cases cannot be written down in their entirety.
- Theorem: There are an uncountable number of real numbers between any two real numbers.
- In particular, real numbers cannot be sorted using Bucket sort or radix sort or counting sort even if they are within a range.
- Real numbers stored on a real computer are not really "real numbers" because they are finite precision numbers. We can only approximate real numbers using a computer. Integers can be stored precisely on a computer. The integer n can be stored using roughly $\log _{2} n$ bits.

QuickSelect: a variant of QuickSort

QuickSelect(array A, int k, int p, int r)
\triangleright Select k-th largest in subarray $A[p . r]$
1
if $(p=r)$
then return $A[p]$
$q \leftarrow \operatorname{Partition}(A, p, r)$
$i \leftarrow q-p+1 \quad \triangleright$ Compute rank of pivot
if $(i=k)$
then return $A[q]$
if $(i>k)$
then return QuickSelect (A, k, p, q)
else return QuickSelect $(A, k-i, q+1, r)$

k-Selection \& Median: Improved Algorithm

- Start with initial array

k-Selection \& Median: Improved Algorithm(Cont'd)

- Use median of medians as pivot

- $T(n)<O(n)+T(n / 5)+T(3 n / 4)$

ImprovedSelect

ImprovedSelect (array A, int k, int p, int r)
\triangleright Select k-th largest in subarray $A[p . . r]$

$$
\text { if }(p=r)
$$

then return $A[p]$
else $N \leftarrow r-p+1$
Partition $A[p . . r]$ into subsets of 5 elements and collect all medians of subsets in $B[1 . .\lceil N / 5\rceil]$.
5 Pivot $\leftarrow \operatorname{ImprovedSelect}(B, 1,\lceil N / 5\rceil,\lceil N / 10\rceil$
$6 \quad q \leftarrow$ PivotPartition $(A, p, r$, Pivot $)$
$7 \quad i \leftarrow q-p+1 \quad \triangleright$ Compute rank of pivot
8 if $(i=k)$
9 then return $A[q]$
10 if $(i>k)$
11 then return $\operatorname{ImprovedSelect}(A, k, p, q-1)$
12 else return $\operatorname{ImprovedSelect}(A, k-i, q+1, r)$

PivotPartition

PivotPartition (array A, int p, int r, item Pivot)
\triangleright Partition using provided Pivot
$1 \quad i \leftarrow p-1$
2 for $j \leftarrow p$ to r
3 do if $(A[j] \leq$ Pivot $)$
$4 \quad$ then $i \leftarrow i+1$
5 exchange $A[i] \leftrightarrow A[j]$
6 return $i+1$

Analysis of ImprovedSelect

Number of elements greater than "median of medians" is at least

$$
3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil-2\right) \geq \frac{3 n}{10}-6
$$

Why?
Our recurrence is given by:

$$
T(n)=O(n)+T(\lceil n / 5\rceil)+T(3 n / 4)
$$

Thus there exists a positive constant a such that

$$
T(n) \leq a n+T(\lceil n / 5\rceil)+T(3 n / 4)
$$

Using the substitution method, let's guess that $T(n)=O(n)$, i.e., $T(n) \leq c n$. Then we need to show that

$$
a n+c\lceil n / 5\rceil+c(3 n / 4) \leq c n
$$

What positive values of c and n_{0} would enforce the above inequality?
When $n>70$, and choosing $c \geq 20 a$ will satisfy above inequality.

Data Structure Evolution

- Standard operations on data structures
- Search
- Insert
- Delete
- Linear Lists
- Implementation: Arrays (Unsorted and Sorted)
- Dynamic Linear Lists
- Implementation: Linked Lists
- Dynamic Trees
- Implementation: Binary Search Trees

BST: Search

TreeSearch (node x, key k)

\triangleright Search for key k in subtree rooted at node x
1 if $((x=\mathrm{NIL})$ or $(k=k e y[x]))$
2 then return x
3 if $(k<k e y[x])$
4 then return Treesearch (left $[x], k)$
5 else return Treesearch $(\operatorname{right}[x], k)$

Time Complexity: O(h) $h=$ height of binary search tree

Not O(log n) - Why?

BST: Insert

TreeInsert (tree T, node z)

\triangleright Insert node z in tree T

$1 \quad y \leftarrow$ NIL
$2 \quad x \leftarrow \operatorname{root}[T]$
$3 \longdiv { \text { while } (~ } x \neq$ NIL) do $y \leftarrow x$
if $(k e y[z]<k e y[x])$ then $x \leftarrow l e f t[x]$ else $x \leftarrow \operatorname{right}[x]$
$8 p[z] \leftarrow y$
9 if ($y=$ NIL $)$
Search for x in T
$h=$ height of binary search tree
Time Complexity: O(h)
$10 \quad$ then $\operatorname{root}[T] \leftarrow z$
11 else if $(k e y[z]<k e y[y])$
then left $[y] \leftarrow z$
else $\operatorname{right}[y] \leftarrow z$
12

13 | then left $[y] \leftarrow z$ | |
| :--- | :--- |
| | else $\operatorname{right}[y] \leftarrow z$ |

BST: Delete

TreeDelete (tree T, node z)

\triangleright Delete node z from tree T

```
if \(((\) left \([z]=\) NIL \()\) or \((\) right \([z]=\) NIL \())\)
    then \(y \leftarrow z\)
    else \(y \leftarrow \operatorname{TrEe-SUCCESSOR}(z)\)
if \((l e f t[y] \neq\) NIL \()\)
    then \(x \leftarrow\) left \([y]\)
    else \(x \leftarrow \operatorname{right}[y]\)
if \((x \neq\) NIL \()\)
    then \(p[x] \leftarrow p[y]\)
if \((p[y]=\) NIL \()\)
    then \(\operatorname{root}[T] \leftarrow x\)
    else if \((y=\operatorname{left}[p[y]])\)
                then left \([p[y]] \leftarrow x\)
                else \(\operatorname{right}[p[y]] \leftarrow x\)
if \((y \neq z)\)
    then
            \(\operatorname{key}[z] \leftarrow k e y[y]\)
\(\operatorname{cop} y\) 's satellite data into \(z\)
return \(y\)
```

Set y as the node to be deleted. It has at most one child, and let that child be node x

If y has one child, then y is deleted and the parent pointer of x is fixed.

The child pointers of the parent of x is fixed.

The contents of node z are fixed.

Animations

- BST:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html
- Rotations:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html
- RB-Trees:
http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html

