
10/14/08 COT 5407 1

Exam: Lessons to be learnt
• (log n)2 log (n2)

• If A > C and B > D, then A + B > C + D

• To disprove A + B > C + D

– it is not enough to show that A <= C or B <= D

– it is enough to show that A <= C and B <= D

• 10/9 < 5/4

– because 10/9 = 40/36, while 5/4 = 45/36

• logba = 1 if a = b

• logba < 1 if a < b

• logba > 1 if a > b

• Time complexity (#3) is written in terms of n and k because no
relationship is known between n and k other than the simple k <= n.

• Time complexity (#4) is written in terms of only n because a
relationship between n and k is provided.

10/14/08 COT 5407 2

Exam: Lessons to be learnt
• Real numbers are infinite precision numbers and in some

cases cannot be written down in their entirety.

• Theorem: There are an uncountable number of real numbers
between any two real numbers.

• In particular, real numbers cannot be sorted using Bucket
sort or radix sort or counting sort even if they are within a
range.

• Real numbers stored on a real computer are not really “real
numbers” because they are finite precision numbers. We can
only approximate real numbers using a computer. Integers
can be stored precisely on a computer. The integer n can be
stored using roughly log2n bits.

10/14/08 COT 5407 3

QuickSelect: a variant of QuickSort

10/14/08 COT 5407 4

k-Selection & Median: Improved Algorithm

• Start with initial array

10/14/08 COT 5407 5

• Use median of medians as pivot

• T(n) < O(n) + T(n/5) + T(3n/4)

k-Selection & Median: Improved Algorithm(Cont d)

10/14/08 COT 5407 6

ImprovedSelect

10/14/08 COT 5407 7

PivotPartition

10/14/08 COT 5407 8

Analysis of ImprovedSelect

10/14/08 COT 5407 9

Data Structure Evolution

• Standard operations on data structures

– Search

– Insert

– Delete

• Linear Lists

– Implementation: Arrays (Unsorted and Sorted)

• Dynamic Linear Lists

– Implementation: Linked Lists

• Dynamic Trees

– Implementation: Binary Search Trees

10/14/08 COT 5407 10

BST: Search

Time Complexity: O(h)
h = height of binary search tree

Not O(log n) — Why?

10/14/08 COT 5407 11

BST: Insert

Time Complexity: O(h)
h = height of binary search tree

Search for x in T

Insert x as leaf in T

10/14/08 COT 5407 12

BST: Delete
Time Complexity: O(h)

h = height of binary search tree

Set y as the node to be deleted.
It has at most one child, and let
that child be node x

If y has one child, then y is deleted
and the parent pointer of x is fixed.

The child pointers of the parent of x
is fixed.

The contents of node z are fixed.

10/14/08 COT 5407 13

Animations
• BST:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html

• Rotations:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html

• RB-Trees:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html

