Exam: Lessons to be learnt

(log n)? = log (n?)

IfA>Cand B>D,thenA+B>C+D

To disprove A+ B>C+D
- it is not enough to show that A <= Cor B<=D
- it is enough to show that A<= Cand B<=D

10/9<5/4
- because 10/9 = 40/36, while 5/4 = 45/36
loga=1ifa=b

logia<1lifa<b
logia>1ifa>b

Time complexity (#3) is written in ferms of n and k because no
relationship is known between n and k other than the simple k <= n.

Time complexity (#4) is written in ferms of only n because a
relationship between n and k is provided.

10/14/08 COT 5407

Exam: Lessons to be learnt

Real numbers are infinite precision numbers and in some
cases cannot be written down in their entirety.

- Theorem: There are an uncountable number of real numbers

between any two real numbers.

* In particular, real numbers cannot be sorted using Bucket
sort or radix sort or counting sort even if they are within a
range.

Real numbers stored on a real computer are not really "real
numbers” because they are finite precision numbers. We can
only approximate real numbers using a computer. Integers
can be stored precisely on a computer. The integer n can be
stored using roughly log,n bits.

10/14/08 COT 5407 2

QuickSelect: a variant of QuickSort

QUICKSELECT (array A,int k,int p,int r)

> Select k-th largest in subarray A[p..r]
if (p=r)

then return A[p|
q < PARTITION(A, p,7)
1—q—p+1 > Compute rank of pivot
if (i = k)

then return Alg|
if (i > k)
then return QUICKSELECT(A, k, p, q)
else |[return QUICKSELECT(A,k —i,q+ 1,7)

H~ I DO =

O 00 -3 O Ut

10/14/08 COT 5407 3

k-Selection & Median: Improved Algorithm

Start with initial array

k-Selection & Median: Improved Algorithm(Cont’d)

Use median of medians as pivot

- T(n) < O(n) + T(n/5) + T(3n/4)

10/14/08 COT 5407

ImprovedSelect

IMPROVEDSELECT (array A,int k,int p,int r)
> Select k-th largest in subarray Alp..r]|

1 if (p=r)

2 then return Alp)

3 else N«—r—p+1

4 | Partition Alp..r| into subsets of 5 elements and
collect all medians of subsets in B[1..[N/5]].

5 | Pivot <« IMPROVEDSELECT(B, 1, [N/5], [N/10]

6 q < PIVOTPARTITION(A, p, r, 1vot)

7T 1—q—p+1 > Compute rank of pivot

8 if (i =Fk)

9 then return A|q|
10 if (7 > k)
11 then return IMPROVEDSELECT(A, k,p,q — 1)
12 else return IMPROVEDSELECT(A,k —17,q+ 1,7)

10/14/08 COT 5407

PivotPartition

PIVOTPARTITION(array A,int p,int r|item Pivot

> Partition using provided Pivot
t—p—1
for 7 «— p to|r
do if (A[j] < Piwvot)
then 1 «— 1+ 1
exchange Ali| « Alj]

H= 2 DO +—

5
6 returni:-+1

10/14/08 COT 5407 7

Analysis of ImprovedSelect

Number of elements greater than “median of medians™ is at least

(=%

Why?

Our recurrence is given by:

T(n) = O(n) +T([n/5]) + T(3n/4)

Thus there exists a positive constant a such that

T(n) < an + T([n/5]) + T(3n/4) ‘

Using the substitution method, let’s guess that 7T'(n) = O(n), i.e., T'(n) < cn.
Then we need to show that

an + c[n/5] +c(3n/4) < cn

What positive values of ¢ and ng would enforce the above inequality?
When n > 70, and choosing ¢ = 20a will satisfy above inequality.

10/14/08 COT 5407 8

Data Structure Evolution

Standard operations on data structures
- Search
- Insert
- Delete

Linear Lists
- Implementation: Arrays (Unsorted and Sorted)

Dynamic Linear Lists
- Implementation: Linked Lists

Dynamic Trees

- Implementation: Binary Search Trees

10/14/08 COT 5407

BST: Search

TREESEARCH(node x, key k)

> Search for key k£ in subtree rooted at node x

1 if ((x = NIL) or (k = key|x]))

2 then return x

3 if (k < key|x])

4 then return TREESEARCH (left|x], k)
5 else return TREESEARCH(right|x], k)

Time Complexity: O(h) Not O(log n) — Why?
h = height of binary search tree

10/14/08 COT 5407 10

o I SO O = W N

— = = =
G 2 = O O

BST: Insert

TREEINSERT(tree T, node z)

> Insert node z in tree T

y «— NIL

x « root|T]

while (x # NIL)

doy« x
if (key|z] < key|z])

then v «— left|x]
else x « right|x

plz] —y

if (y = NIL)

then root|T] « z

else if (key[z] < keyly])
then left|y] < =
else right[y] « =

10/14/08 COT 5407

Time Complexity: O(h)
h = height of binary search tree

SearchforxinT

Insert x asleaf in T

11

BST: Delete

TREEDELETE(tree T, node z)

= Q0 b —

oo =1 Oy Ot

11
1.2
13
14
15
16
17

> Delete node z from tree T

if ((left|z] = NIL) or (right|z] = NIL))
then y « 2
else y < TREE-SUCCESSOR(z)
if (left[y] # NIL)
then = <« left|y|
else = «— right|y]

Time Complexity: O(h)

h = height of binary search tree

Set y as the node to be deleted.
It has at most one child, and let
that child be node x

if (x £ NIL)
then plx| < ply|

if (ply] = NIL)

then root[T)| «— x

else [if (v = left|ply]])
then left[py]] — x
else right[plyl] —

if (y # 2
then|key|z] — keyly]

cop y’s satellite data into z

return y

If y has one child, then y is deleted
and the parent pointer of x is fixed.

The child pointers of the parent of x
is fixed.

The contents of node z are fixed.

12

BST:

Rotations:

RB-Trees:

10/14/08

Animations

COT 5407

13

