Exam: Lessons to be learnt

- $(\log n)^2 \neq \log (n^2)$
- If A > C and B > D, then A + B > C + D
- To disprove A + B > C + D
 - it is not enough to show that A <= C or B <= D
 - it is enough to show that A <= C and B <= D
- 10/9 < 5/4
 - because 10/9 = 40/36, while 5/4 = 45/36
- $\log_{b}a = 1$ if a = b
- log_ba < 1 if a < b
- log_ba > 1 if a > b
- Time complexity (#3) is written in terms of n and k because no relationship is known between n and k other than the simple k <= n.
- Time complexity (#4) is written in terms of only n because a relationship between n and k is provided.

Exam: Lessons to be learnt

- **Real numbers** are infinite precision numbers and in some cases cannot be written down in their entirety.
- Theorem: There are an uncountable number of real numbers between any two real numbers.
- In particular, real numbers cannot be sorted using Bucket sort or radix sort or counting sort even if they are within a range.
- Real numbers stored on a real computer are not really "real numbers" because they are finite precision numbers. We can only approximate real numbers using a computer. Integers can be stored precisely on a computer. The integer n can be stored using roughly log₂n bits.

QuickSelect: a variant of QuickSort

QUICKSELECT(
$$array A$$
, $int k$, $int p$, $int r$)
 \triangleright Select k-th largest in subarray $A[p..r]$
1 **if** $(p = r)$
2 **then return** $A[p]$
3 $q \leftarrow \text{PARTITION}(A, p, r)$
4 $i \leftarrow q - p + 1$ \triangleright Compute rank of pivot
5 **if** $(i = k)$
6 **then return** $A[q]$
7 **if** $(i > k)$
8 **then return** QUICKSELECT (A, k, p, q)
9 **else return** QUICKSELECT $(A, k - i, q + 1, q)$

10/14/08

r)

k-Selection & Median: Improved Algorithm

• Start with initial array

k-Selection & Median: Improved Algorithm(Cont'd)

• Use median of medians as pivot

• T(n) < O(n) + T(n/5) + T(3n/4)

ImprovedSelect

IMPROVEDSELECT $(array \ A, int \ k, int \ p, int \ r)$

 \triangleright Select k-th largest in subarray A[p..r]

1 **if**
$$(p = r)$$

2 then return A[p]

3 else
$$N \leftarrow r - p + 1$$

- 4 Partition A[p..r] into subsets of 5 elements and collect all medians of subsets in B[1..[N/5]].
- 5 $Pivot \leftarrow IMPROVEDSELECT(B, 1, \lceil N/5 \rceil, \lceil N/10 \rceil)$

$$6 \quad q \leftarrow \text{PIVOTPARTITION}(A, p, r, Pivot)$$

7
$$i \leftarrow q - p + 1$$
 \triangleright Compute rank of pivot

8 **if**
$$(i = k)$$

9 then return
$$A[q]$$

10 **if**
$$(i > k)$$

- 11 **then return** IMPROVEDSELECT(A, k, p, q 1)
- 12 else return ImprovedSelect(A, k i, q + 1, r)

PivotPartition

PIVOTPARTITION($array \ A, int \ p, int \ r, item \ Pivot$) > Partition using provided Pivot1 $i \leftarrow p - 1$ 2 for $j \leftarrow p$ to r3 do if $(A[j] \leq Pivot)$ 4 then $i \leftarrow i + 1$ 5 exchange $A[i] \leftrightarrow A[j]$ 6 return i + 1

Analysis of ImprovedSelect

Number of elements greater than "median of medians" is at least

$$3\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{5}\right\rceil\right\rceil - 2\right) \ge \frac{3n}{10} - 6$$

Why?

Our recurrence is given by:

$$T(n) = O(n) + T(\lceil n/5 \rceil) + T(3n/4)$$

Thus there exists a positive constant a such that

$$T(n) \le an + T(\lceil n/5 \rceil) + T(3n/4)$$

Using the substitution method, let's guess that T(n) = O(n), i.e., $T(n) \leq cn$. Then we need to show that

$$an + c\lceil n/5\rceil + c(3n/4) \le cn$$

What positive values of c and n_0 would enforce the above inequality? When n > 70, and choosing $c \ge 20a$ will satisfy above inequality.

10/14/08

COT 5407

Data Structure Evolution

- Standard operations on data structures
 - Search
 - Insert
 - Delete
- Linear Lists
 - Implementation: Arrays (Unsorted and Sorted)
- Dynamic Linear Lists
 - Implementation: Linked Lists
- Dynamic Trees
 - Implementation: Binary Search Trees

BST: Search

TREESEARCH(node x, key k)

Time Complexity: O(h) h = height of binary search tree Not O(log n) - Why?

BST: Insert

BST: Delete

		Time Complexity: O(h)
ΤF	$reeDelete(tree \ T, node \ z)$	h = height of binary search tree
	\triangleright Delete node z from tree T	
1	if $((left[z] = NIL) \text{ or } (right[z] = NIL))$	
2	$\mathbf{then}\ y \leftarrow z$	Set y as the node to be deleted
3	else $y \leftarrow \text{TREE-SUCCESSOR}(z)$	Set y as the node to be deleted.
4	if $(left[y] \neq NIL)$	It has at most one child, and let
5	then $x \leftarrow left[y]$	that child be node x
6	else $x \leftarrow right[y]$	
7	if $(x \neq \text{NIL})$	If y has one child, then y is deleted
8	$\mathbf{then} \ p[x] \leftarrow p[y]$	and the parent pointer of \mathbf{x} is fixed.
9	$\mathbf{if} \ (p[y] = \mathbf{NIL})$	
10	then $root[T] \leftarrow x$	
11	else if $(y = left[p[y]])$	The child pointers of the parent of y
12	then $left[p[y]] \leftarrow x$	in fixed
13	else $right[p[y]] \leftarrow x$	
14	$\mathbf{if} \ (y \neq z)$	
15	then $key[z] \leftarrow key[y]$	The contents of node 7 are fixed
16	cop y's satellite data into z	
17	return y	12

Animations

· BST:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html

Rotations:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html

• RB-Trees:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html