BST: Insert

```
TreeInsert(tree T, node z)
     \triangleright Insert node z in tree T
     y \leftarrow \text{NIL}
    x \leftarrow root[T]
     while (x \neq \text{NIL})
              \mathbf{do}\ y \leftarrow x
 5
                  if (key[z] < key[x])
 6
                      then x \leftarrow left[x]
                      else x \leftarrow right[x]
     p|z| \leftarrow y
     if (y = NIL)
          then root[T] \leftarrow z
10
          else if (key[z] < key[y])
11
12
                      then left[y] \leftarrow z
13
                      else right[y] \leftarrow z
```

Time Complexity: O(h)
h = height of binary search tree

Search for x in T

Insert x as leaf in T

BST: Delete

```
TreeDelete(tree T, node z)
     \triangleright Delete node z from tree T
     if ((left[z] = NIL) \text{ or } (right[z] = NIL))
          then y \leftarrow z
          else y \leftarrow \text{Tree-Successor}(z)
     if (left[y] \neq NIL)
          then x \leftarrow left[y]
 5
          else x \leftarrow right[y]
 6
     if (x \neq \text{NIL})
          then p[x] \leftarrow p[y]
     \overline{\mathbf{if}} (p[y] = \text{NIL})
          then root[T] \leftarrow x
10
          else |if|(y = left[p[y]])
11
                     then left[p[y]] \leftarrow x
12
                     else right[p[y]] \leftarrow x
13
     if (y \neq z)
14
          then |key[z] \leftarrow key[y]
15
                  cop y's satellite data into z
16
```

17

return y

Time Complexity: O(h)
h = height of binary search tree

Set y as the node to be deleted. It has at most one child, and let that child be node x

If y has one child, then y is deleted and the parent pointer of x is fixed.

The child pointers of the parent of x is fixed.

The contents of node z are fixed.

Animations

· BST:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/BST-Example.html

· Rotations:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/index2.html

· RB-Trees:

http://babbage.clarku.edu/~achou/cs160/examples/bst_animation/RedBlackTree-Example.html

Red-Black (RB) Trees

- · Every node in a red-black tree is colored either red or black.
 - The root is always black.
 - Every path on the tree, from the root down to the leaf, has the same number of black nodes.
 - No red node has a red child.
 - Every NIL pointer points to a special node called NIL[T] and is colored black.
- Every RB-Tree with n nodes has black height at most logn
- Every RB-Tree with n nodes has height at most 2logn

Red-Black Tree Insert

```
RB-Insert (T,z)
                           // pg 280
    // Insert node z in tree T
    y = NIL[T]
    x = root[T]
    while (x \neq NIL[T]) do
            y = x
             if (key[z] < key[x])
                          x = left[x]
                          x = right[x]
    p[z] = y
    if (y == NIL[T])
             root[T] = z
    else if (key[z] < key[y])
             left[y] = z
    else right[y] = z
    // new stuff
    left[z] = NIL[T]
    right[z] = NIL[T]
    color[z] = RED
    RB-Insert-Fixup (T,z)
```

```
RB-Insert-Fixup (T,z)
    while (color[p[z]] == RED) do
            if (p[z] = left[p[p[z]]]) then
                y = right[p[p[z]]]
                if (color[y] == RED) then
                                                        // C-1
                         color[p[z]] = BLACK
                         color[y] = BLACK
                         z = p[p[z]]
                         color[z] = RED
                else
                         if (z == right[p[z]]) then // C-2
                             z = p[z]
                             LeftRotate(T,z)
                                                  // C-3
                         color[p[z]] = BLACK
                         color[p[p[z]]] = RED
                         RightRotate(T,p[p[z]])
            else
                // Symmetric code: "right" ↔ "left"
    color[root[T]] = BLACK
```

COT 5407 5

Rotations

```
LeftRotate(T,x) // pg 278
   // right child of x becomes x's parent.
   // Subtrees need to be readjusted.
   y = right[x]
   right[x] = left[y] // y's left subtree becomes x's right
   p[left[y]] = x
   p[y] = p[x]
   if (p[x] == NIL[T]) then
         root[T] = y
   else if (x == left[p[x]]) then
         left[p[x]] = y
   else right[p[x]] = y
   left[y] = x
   p[x] = y
```

Operations on **Dynamic** RB Trees

- · K-Selection
 - Select an item with a specified rank

"Efficient" solution not possible without preprocessing Preprocessing - store additional information at nodes

- Inverse of K-Selection
 - Find rank of an item in the tree
- What information should be stored?
 - Rank
 - ??

OS-Rank

```
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
      return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])
```

Time Complexity O(log n)

OS-Select

```
OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r = size[left[x]]+1
2. if i = r then
3.
         return x
                                      Time Complexity O(log n)
4. elseif i < r then
5.
          return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)
```

RB-Tree Augmentation

- Augment x with Size(x), where
 - Size(x) = size of subtree rooted at x
 - Size(NIL) = 0

Augmented Data Structures

- Why is it needed?
 - Because basic data structures not enough for all operations
 - storing extra information helps execute special operations more efficiently.
- Can any data structure be augmented?
 - Yes. Any data structure can be augmented.
- Can a data structure be augmented with any additional information?
 - Theoretically, yes.
- How to choose which additional information to store.
 - Only if we can maintain the additional information efficiently under all operations. That means, with additional information, we need to perform old and new operations efficiently maintain the additional information efficiently.

How to augment data structures

- 1. choose an underlying data structure
- 2. determine additional information to be maintained in the underlying data structure,
- 3. develop new operations,
- 4. verify that the additional information can be maintained for the modifying operations on the underlying data structure.

Augmenting RB-Trees

Theorem 14.1, page 309

Let f be a field that augments a red-black tree T with n nodes, and f(x) can be computed using only the information in nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].

Then, we can $\underline{\text{maintain}}$ f(x) during insertion and deletion without asymptotically affecting the $O(\log n)$ performance of these operations.

For example,

```
size[x] = size[left[x]] + size[right[x]] + 1
rank[x] = ?
```

Examples of augmenting information for RB-Trees

- Parent
- Height
- Any associative function on all previous values or all succeeding values.
- Next
- Previous