
10/28/08 COT 5407 1

RB-Tree Augmentation

• Augment x with Size(x), where

– Size(x) = size of subtree rooted at x

– Size(NIL) = 0

10/28/08 COT 5407 2

Augmented Data Structures
• Why is it needed?

– Because basic data structures not enough for all operations

– storing extra information helps execute special operations more efficiently.

• Can any data structure be augmented?

– Yes. Any data structure can be augmented.

• Can a data structure be augmented with any additional information?

– Theoretically, yes.

• How to choose which additional information to store.

– Only if we can maintain the additional information efficiently under all

operations. That means, with additional information, we need to perform old

and new operations efficiently maintain the additional information

efficiently.

10/28/08 COT 5407 3

How to augment data structures

1. choose an underlying data structure

2. determine additional information to be maintained in the

underlying data structure,

3. develop new operations,

4. verify that the additional information can be maintained

for the modifying operations on the underlying data

structure.

10/28/08 COT 5407 4

Augmenting RB-Trees
Theorem 14.1, page 309

Let f be a field that augments a red-black tree T with n nodes, and f(x)

can be computed using only the information in nodes x, left[x], and

right[x], including f[left[x]] and f[right[x]].

Then, we can maintain f(x) during insertion and deletion without

asymptotically affecting the O(log n) performance of these operations.

For example,

size[x] = size[left[x]] + size[right[x]] + 1

rank[x] = ?

10/28/08 COT 5407 5

Examples of augmenting information for RB-Trees

• Parent

• Height

• Any associative function on all previous values or all

succeeding values.

• Next

• Previous

10/28/08 COT 5407 6

Example
• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11],

[8,12], [12,14]

• Simple Greedy Selection
– Sort by start time and pick in “greedy” fashion

– Does not work. WHY?

• [0,6], [6,10] is the solution you will end up with.

• Other greedy strategies
– Sort by length of interval

– Does not work. WHY?

10/28/08 COT 5407 7

Example
• [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14] -- Sorted
by finish times

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]

10/28/08 COT 5407 8

Greedy Algorithms
• Given a set of activities (si, fi), we want to schedule the maximum

number of non-overlapping activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)

1. n = length[s]

2. S = {a1}

3. i = 1

4. for m = 2 to n do

5. if sm is not before fi then

6. S = S U {am}

7. i = m

8. return S

10/28/08 COT 5407 9

Why does it work?
• THEOREM

Let A be a set of activities and let a1 be the activity with the earliest finish
time. Then activity a1 is in some maximum-sized subset of non-overlapping
activities.

• PROOF

Let S’ be a solution that does not contain a1. Let a’1 be the activity with the
earliest finish time in S’. Then replacing a’1 by a1 gives a solution S of the same
size.

Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

10/28/08 COT 5407 10

Greedy Algorithms – Huffman Coding

• Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains 1,614,107
sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids.
What is the minimum number of bits to store the compressed database?

~2.5 G bits or 300MB.

• How to improve this?

• Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98

Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 Thr (T) 5.52

Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18

Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 Tyr (Y) 3.13

Cys (C) 1.60 Ile (I) 5.88 Pro (P) 4.87 Val (V) 6.66

• Idea: Use shorter codes for more frequent amino acids and longer codes for less
frequent ones.

10/28/08 COT 5407 11

IDEA 3: Use Variable Length

Codes

A 22

T 22

C 18

G 18

N 10

Y 5

R 4

S 4

M 3

Huffman Coding

IDEA 1: Use ASCII Code

Each need at least 8 bits,

Total = 16 M bits = 2 MB

2 million characters in file.

A, C, G, T, N, Y, R, S, M

IDEA 2: Use 4-bit Codes

Each need at least 4 bits,

Total = 8 M bits = 1 MB

110101101110010001100000000110

110101101110010001100000000110

How to Decode?

Need Unique decoding!

Easy for Ideas 1 & 2.

What about Idea 3?

2 million characters in file.

Length = ?

Expected length = ?

Sum up products of frequency times the code length, i.e.,

(.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =

3.24 M bits = .4 MB

Percentage

Frequencies

11

10

011

010

001

00011

00010

00001

00000

