Greedy Algorithms - Huffman Coding

- Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains 1,614,107 sequence entries, comprising $505,947,503$ amino acids. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?

```
~2.5 G bits or 300MB.
```

- How to improve this?
- Information: Frequencies are not the same.

Ala (A) 7.72	Gln (Q) 3.91	Leu (L) 9.56	Ser (S) 6.98
Arg (R) 5.24	Glu (E) 6.54	Lys (K) 5.96	Thr (T) 5.52
Asn (N) 4.28	Gly (G) 6.90	Met (M) 2.36	Trp (W) 1.18
Asp (D) 5.28	His (H) 2.26	Phe (F) 4.06	Tyr (Y) 3.13
Cys (C) 1.60	Ile (I) 5.88	Pro (P) 4.87	$\operatorname{Val}(V) 6.66$

- Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent ones.

Huffman Coding

2 million characters in file.
A, C, G, T, N, Y, R, S, M

IDEA 1: Use ASCII Code
Each need at least 8 bits,
Total $=16 \mathrm{M}$ bits $=2 \mathrm{MB}$

IDEA 2: Use 4-bit Codes
Each need at least 4 bits,
Total $=8 \mathrm{M}$ bits $=1 \mathrm{MB}$

Percentage Frequencies

IDEA 3: Use Variable Length

 CodesA 2211
T 2210
C 18011
G 18010
001
00011
00010
00001
00000

How to Decode?

Need Unique decoding!
Easy for Ideas 1 \& 2.
What about Idea 3?

110101101110010001100000000110

110101101110010001100000000110

2 million characters in file.
Length = ?
Expected length = ?
Sum up products of frequency times the code length, i.e.,

$$
\begin{aligned}
& (.22 \times 2+.22 \times 2+.18 \times 3+.18 \times 3+.10 \times 3+.05 \times 5+.04 \times 5+.04 \times 5+.03 \times 5) \times 2 \mathrm{M} \text { bits }= \\
& 3.24 \mathrm{M} \text { bits }=.4 \mathrm{MB}
\end{aligned}
$$

Dynamic Programming

- Activity Problem Revisited: Given a set of n activities $a_{i}=\left(s_{i}\right.$, f_{i}), we want to schedule the maximum number of nonoverlapping activities.
- New Approach:
- Observation: To solve the problem on activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we notice that either
- optimal solution does not include a_{n}
- then enough to solve subproblem on $A_{n-1}=\left\{a_{1}, \ldots, a_{n-1}\right\}$
- optimal solution includes a_{n}
- Enough to solve subproblem on $A_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$, the set A without activities that overlap a_{n}.

An efficient implementation

- Why not solve the subproblems on $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ in that order?
- Is the problem on A_{1} easy?
- Can the optimal solutions to the problems on A_{1}, \ldots, A_{i} help to solve the problem on A_{i+1} ?
- YES! Either:
- optimal solution does not include a_{i+1}
- problem on A_{i}
- optimal solution includes a_{i+1}
- problem on A_{k} (equal to A_{i} without activities that overlap a_{i+1})
- but this has already been solved according to our ordering.

Dynamic Programmming: Activity Selection

- Select the maximum number of non-overlapping activities from a set of n activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$ (sorted by finish times).
- Identify "easier" subproblems to solve.
$A_{1}=\left\{a_{1}\right\}$
$A_{2}=\left\{a_{1}, a_{2}\right\}$
$A_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, \ldots$,
$A_{n}=A$
- Subproblems: Select the max number of non-overlapping activities from A_{i}

Dynamic Programmming: Activity Selection

- Solving for A_{n} solves the original problem.
- Solving for A_{1} is easy.
- If you have optimal solutions S_{1}, \ldots, S_{i-1} for subproblems on A_{1}, \ldots, A_{i-1}, how to compute S_{i} ?
- The optimal solution for A_{i} either
- Case 1: does not include a_{i} or
- Case 2: includes a_{i}
- Case 1:
- $S_{i}=S_{i-1}$
- Case 2:
- $S_{i}=S_{k} \cup\left\{a_{i}\right\}$, for some $k<i$.
- How to find such a k ? We know that a_{k} cannot overlap a_{i}.

Dynamic Programmming: Activity Selection

- DP-ACTIVITY-SELECTOR (s, f)

1. $n=$ length[s]
2. $N[1]=1 \quad / /$ number of activities in S_{1}
3. $F[1]=1 \quad / /$ last activity in S_{1}
4. for $i=2$ to n do
5. let k be the last activity finished before s_{i}
6. if ($N[i-1]>N[k]$) then // Case 1
7. $N[i]=N[i-1]$
8. $\quad F[i]=F[i-1]$
9. else // Case 2
10. $N[i]=N[k]+1$
11. $\quad \mathrm{F}[\mathrm{i}]=\mathrm{i}$

How to output S_{n} ? Backtrack!
Time Complexity?
$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Dynamic Programming Features

- Identification of subproblems
- Recurrence relation for solution of subproblems
- Overlapping subproblems (sometimes)
- Identification of a hierarchy/ordering of subproblems
- Use of table to store solutions of subproblems (MEMOIZATION)
- Optimal Substructure

Longest Common Subsequence

$$
\begin{array}{ll}
S_{1}=\text { CORIANDER } & \text { CORIANDER } \\
S_{2}=\text { CREDITORS } & \text { CREDITORS }
\end{array}
$$

Longest Common Subsequence($\left.\mathrm{S}_{1}[1 . .9], \mathrm{S}_{2}[1 . .9]\right)=$ CRIR
Subproblems:

- LCS[S $\left.S_{1}[1 . . i], S_{2}[1 . . j]\right]$, for all i and j [BETTER]
- Recurrence Relation:

```
- \(\operatorname{LCS}[i, j]=\operatorname{LCS}[i-1, j-1]+1, \quad\) if \(\left.S_{1}[i]=S_{2}[j]\right)\)
    \(\operatorname{LCS}[i, j]=\max \{\operatorname{LCS}[i-1, j], \operatorname{LCS}[i, j-1]\}\), otherwise
```

- Table ($m \times n$ table)
- Hierarchy of Solutions?

LCS Problem

```
LCS_Length (X, Y )
1. m}\leftarrowlength[X
2. }n<L<Length[Y
3. for i=1 to m
4. do c[i, 0]<0
5. for j=1 to n
6. do c[0,j]<0
7. for i=1 to m
8. do for j=1 to n
9. do if ( }xi=yj
10. then c[i,j]}\leftarrowc[i-1,j-1]+
11. b[i,j] < " `"
12. else if c[i-1,j]c[i,j-1]
13. then c[i,j]&c[i-1,j]
14. b[i,j] < " ^"
15. else
16. }c[i,j]\leftarrowc[i,j-1
17. b[i,j] < "\leftarrow"
18. return
```


LCS Example

		H	A	B	I	T	A	T
	0	0	0	0	0	0	0	0
A	0	$0 \uparrow$	15	$1 \leftarrow$	$1 \leftarrow$	$1 \leftarrow$	1s.	$1 \leftarrow$
L	0	$0 \uparrow$	$1 \uparrow$					
P	0	$0 \uparrow$	$1 \uparrow$					
H	0	1 ¢	$1 \uparrow$					
A	0	$1 \uparrow$	2	$2 \leftarrow$	$2 \leftarrow$	26	25	$2 \leftarrow$
B	0	$1 \uparrow$	$2 \uparrow$	38	$3 \leftarrow$	36	$3 ¢$	$3 \leftarrow$
E	0	$1 \uparrow$	$2 \uparrow$	$3 \uparrow$				
T	0	$1 \uparrow$	$2 \uparrow$	$3 \uparrow$	$3 \uparrow$	45	$4 \leftarrow$	4*

Dynamic Programming vs. Divide-\&-conquer

- Divide-\&-conquer works best when all subproblems are independent. So, pick partition that makes algorithm most efficient \& simply combine solutions to solve entire problem.
- Dynamic programming is needed when subproblems are dependent; we don't know where to partition the problem.
For example, let $S_{1}=\{A L P H A B E T\}$, and $S_{2}=\{H A B I T A T\}$.
Consider the subproblem with $S_{1}{ }^{\prime}=\{A L P H\}, S_{2}{ }^{\prime}=\{H A B I\}$.
Then, $\operatorname{LCS}\left(S_{1}{ }_{1}, S_{2}{ }^{\prime}\right)+\operatorname{LCS}\left(S_{1}-S_{1}{ }^{\prime}, S_{2}-S_{2}{ }^{\prime}\right) \neq \operatorname{LCS}\left(S_{1}, S_{2}\right)$
- Divide-\&-conquer is best suited for the case when no "overlapping subproblems" are encountered.
- In dynamic programming algorithms, we typically solve each subproblem only once and store their solutions. But this is at the cost of space.

Dynamic programming vs Greedy

1. Dynamic Programming solves the sub-problems bottom up. The problem can't be solved until we find all solutions of sub-problems. The solution comes up when the whole problem appears.
Greedy solves the sub-problems from top down. We first need to find the greedy choice for a problem, then reduce the problem to a smaller one. The solution is obtained when the whole problem disappears.
2. Dynamic Programming has to try every possibility before solving the problem. It is much more expensive than greedy. However, there are some problems that greedy can not solve while dynamic programming can. Therefore, we first try greedy algorithm. If it fails then try dynamic programming.

Dynamic Programming vs. Divide-\&-conquer

- Divide-\&-conquer works best when all subproblems are independent. So, pick partition that makes algorithm most efficient \& simply combine solutions to solve entire problem.
- Dynamic programming is needed when subproblems are dependent; we don't know where to partition the problem.
For example, let $S_{1}=\{A L P H A B E T\}$, and $S_{2}=\{H A B I T A T\}$.
Consider the subproblem with $S_{1}{ }^{\prime}=\{A L P H\}, S_{2}{ }^{\prime}=\{H A B I\}$.
Then, $\operatorname{LCS}\left(S_{1}{ }_{1}, S_{2}{ }^{\prime}\right)+\operatorname{LCS}\left(S_{1}-S_{1}{ }^{\prime}, S_{2}-S_{2}{ }^{\prime}\right) \neq \operatorname{LCS}\left(S_{1}, S_{2}\right)$
- Divide-\&-conquer is best suited for the case when no "overlapping subproblems" are encountered.
- In dynamic programming algorithms, we typically solve each subproblem only once and store their solutions. But this is at the cost of space.

Dynamic programming vs Greedy

1. Dynamic Programming solves the sub-problems bottom up. The problem can't be solved until we find all solutions of sub-problems. The solution comes up when the whole problem appears.
Greedy solves the sub-problems from top down. We first need to find the greedy choice for a problem, then reduce the problem to a smaller one. The solution is obtained when the whole problem disappears.
2. Dynamic Programming has to try every possibility before solving the problem. It is much more expensive than greedy. However, there are some problems that greedy cannot solve while dynamic programming can. Therefore, we first try greedy algorithm. If it fails then try dynamic programming.

Fractional Knapsack Problem

- Burglar's choices:

Items: $x_{1}, x_{2}, \ldots, x_{n}$
Value: $v_{1}, v_{2}, \ldots, v_{n}$
Max Quantity: $q_{1}, q_{2}, \ldots, q_{n}$
Weight per unit quantity: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B.
Burglar can take "fractional" amount of any item.
How can burglar maximize value of the loot?

- Greedy Algorithm works!

Pick the maximum possible quantity of highest value per weight item. Continue until weight limit of truck is reached.

0-1 Knapsack Problem

- Burglar's choices:

Items: $x_{1}, x_{2}, \ldots, x_{n}$
Value: $v_{1}, v_{2}, \ldots, v_{n}$
Weight: $w_{1}, w_{2}, \ldots, w_{n}$
Getaway Truck has a weight limit of B.
Burglar cannot take "fractional" amount of item. How can burglar maximize value of the loot?

- Greedy Algorithm does not work! Why?
- Need dynamic programming!

0-1 Knapsack Problem

- Subproblems?
- V[j, L] = Optimal solution for knapsack problem assuming a truck of weight limit L and choice of items from set $\{1,2, \ldots, j\}$.
- $V[n, B]=$ Optimal solution for original problem
- $V[1, L]=$ easy to compute for all values of L.
- Table of solutions?
- V[1..n, 1..B]
- Ordering of subproblems?
- Row-wise
- Recurrence Relation? [Either x_{j} included or not]
- V[j, L] = max \{ V[j-1, L],

$$
\left.v_{j}+V\left[j-1, L-w_{j}\right]\right\}
$$

1-d, 2-d, 3-d Dynamic Programming

- Classification based on the dimension of the table used to store solutions to subproblems.
- 1-dimensional DP
- Activity Problem
- 2-dimensional DP
- LCS Problem
- 0-1 Knapsack Problem
- Matrix-chain multiplication
- 3-dimensional DP
- All-pairs shortest paths problem

