
10/30/08 COT 5407 1

Greedy Algorithms – Huffman Coding

• Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains 1,614,107
sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids.
What is the minimum number of bits to store the compressed database?

~2.5 G bits or 300MB.

• How to improve this?

• Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98

Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 Thr (T) 5.52

Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18

Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 Tyr (Y) 3.13

Cys (C) 1.60 Ile (I) 5.88 Pro (P) 4.87 Val (V) 6.66

• Idea: Use shorter codes for more frequent amino acids and longer codes for less
frequent ones.

10/30/08 COT 5407 2

IDEA 3: Use Variable Length

Codes

A 22

T 22

C 18

G 18

N 10

Y 5

R 4

S 4

M 3

Huffman Coding

IDEA 1: Use ASCII Code

Each need at least 8 bits,

Total = 16 M bits = 2 MB

2 million characters in file.

A, C, G, T, N, Y, R, S, M

IDEA 2: Use 4-bit Codes

Each need at least 4 bits,

Total = 8 M bits = 1 MB

110101101110010001100000000110

110101101110010001100000000110

How to Decode?

Need Unique decoding!

Easy for Ideas 1 & 2.

What about Idea 3?

2 million characters in file.

Length = ?

Expected length = ?

Sum up products of frequency times the code length, i.e.,

(.22x2 + .22x2 + .18x3 + .18x3 + .10x3 + .05x5 + .04x5 + .04x5 + .03x5) x 2 M bits =

3.24 M bits = .4 MB

Percentage

Frequencies

11

10

011

010

001

00011

00010

00001

00000

10/30/08 COT 5407 3

Dynamic Programming
• Activity Problem Revisited: Given a set of n activities ai = (si,

fi), we want to schedule the maximum number of non-
overlapping activities.

• New Approach:
– Observation: To solve the problem on activities A = {a1,…,an}, we

notice that either

• optimal solution does not include an

– then enough to solve subproblem on An-1= {a1,…,an-1}

• optimal solution includes an

– Enough to solve subproblem on Ak = {a1,…,ak}, the set A without activities that
overlap an.

10/30/08 COT 5407 4

An efficient implementation

• Why not solve the subproblems on A1, A2, …, An-1,An in that

order?

• Is the problem on A1 easy?

• Can the optimal solutions to the problems on A1,…,Ai help to

solve the problem on Ai+1?

– YES! Either:

• optimal solution does not include ai+1

– problem on Ai

• optimal solution includes ai+1

– problem on Ak (equal to Ai without activities that overlap ai+1)

– but this has already been solved according to our ordering.

10/30/08 COT 5407 5

Dynamic Programmming: Activity Selection

• Select the maximum number of non-overlapping activities from a set of

n activities A = {a1, …, an} (sorted by finish times).

• Identify “easier” subproblems to solve.

A1 = {a1}

A2 = {a1, a2}

A3 = {a1, a2, a3}, …,

An = A

• Subproblems: Select the max number of non-overlapping activities from

Ai

10/30/08 COT 5407 6

Dynamic Programmming: Activity Selection

• Solving for An solves the original problem.

• Solving for A1 is easy.

• If you have optimal solutions S1, …, Si-1 for subproblems on A1, …, Ai-1,
how to compute Si?

• The optimal solution for Ai either

– Case 1: does not include ai or

– Case 2: includes ai

• Case 1:

– Si = Si-1

• Case 2:

– Si = Sk U {ai}, for some k < i.

– How to find such a k? We know that ak cannot overlap ai.

10/30/08 COT 5407 7

Dynamic Programmming: Activity Selection

• DP-ACTIVITY-SELECTOR (s, f)

1. n = length[s]

2. N[1] = 1 // number of activities in S1

3. F[1] = 1 // last activity in S1

4. for i = 2 to n do

5. let k be the last activity finished before si

6. if (N[i-1] > N[k]) then // Case 1

7. N[i] = N[i-1]

8. F[i] = F[i-1]

9. else // Case 2

10. N[i] = N[k] + 1

11. F[i] = i
How to output Sn?

Backtrack!

Time Complexity?

O(n lg n)

10/30/08 COT 5407 8

Dynamic Programming Features

• Identification of subproblems

• Recurrence relation for solution of subproblems

• Overlapping subproblems (sometimes)

• Identification of a hierarchy/ordering of
subproblems

• Use of table to store solutions of subproblems
(MEMOIZATION)

• Optimal Substructure

10/30/08 COT 5407 9

Longest Common Subsequence
S1 = CORIANDER CORIANDER

S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR

Subproblems:

– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:

– LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

• Table (m X n table)

• Hierarchy of Solutions?

10/30/08 COT 5407 10

LCS Problem
LCS_Length (X, Y)

1. m length[X]

2. n Length[Y]

3. for i = 1 to m

4. do c[i, 0] 0

5. for j =1 to n

6. do c[0,j] 0

7. for i = 1 to m

8. do for j = 1 to n

9. do if (xi = yj)

10. then c[i, j] c[i-1, j-1] + 1

11. b[i, j] “ ”

12. else if c[i-1, j] c[i, j-1]

13. then c[i, j] c[i-1, j]

14. b[i, j] “ ”

15. else

16. c[i, j] c[i, j-1]

17. b[i, j] “ ”

18. return

10/30/08 COT 5407 11

LCS Example

10/30/08 COT 5407 12

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are independent. So, pick
partition that makes algorithm most efficient & simply combine solutions to
solve entire problem.

• Dynamic programming is needed when subproblems are dependent; we don’t know
where to partition the problem.

For example, let S1= {ALPHABET}, and S2 = {HABITAT}.

Consider the subproblem with S1 = {ALPH}, S2 = {HABI}.

Then, LCS (S1 , S2) + LCS (S1-S1 , S2-S2) LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no “overlapping subproblems”
are encountered.

• In dynamic programming algorithms, we typically solve each subproblem only
once and store their solutions. But this is at the cost of space.

10/30/08 COT 5407 13

Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. The problem can’t be

solved until we find all solutions of sub-problems. The solution comes up when

the whole problem appears.

Greedy solves the sub-problems from top down. We first need to find the

greedy choice for a problem, then reduce the problem to a smaller one. The

solution is obtained when the whole problem disappears.

2. Dynamic Programming has to try every possibility before solving the problem. It

is much more expensive than greedy. However, there are some problems that

greedy can not solve while dynamic programming can. Therefore, we first try

greedy algorithm. If it fails then try dynamic programming.

10/30/08 COT 5407 14

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are independent. So, pick
partition that makes algorithm most efficient & simply combine solutions to
solve entire problem.

• Dynamic programming is needed when subproblems are dependent; we don’t know
where to partition the problem.

For example, let S1= {ALPHABET}, and S2 = {HABITAT}.

Consider the subproblem with S1 = {ALPH}, S2 = {HABI}.

Then, LCS (S1 , S2) + LCS (S1-S1 , S2-S2) LCS(S1, S2)

• Divide-&-conquer is best suited for the case when no “overlapping subproblems”
are encountered.

• In dynamic programming algorithms, we typically solve each subproblem only
once and store their solutions. But this is at the cost of space.

10/30/08 COT 5407 15

Dynamic programming vs Greedy
1. Dynamic Programming solves the sub-problems bottom up. The problem can’t be

solved until we find all solutions of sub-problems. The solution comes up when

the whole problem appears.

Greedy solves the sub-problems from top down. We first need to find the

greedy choice for a problem, then reduce the problem to a smaller one. The

solution is obtained when the whole problem disappears.

2. Dynamic Programming has to try every possibility before solving the problem. It

is much more expensive than greedy. However, there are some problems that

greedy cannot solve while dynamic programming can. Therefore, we first try

greedy algorithm. If it fails then try dynamic programming.

10/30/08 COT 5407 16

Fractional Knapsack Problem
• Burglar’s choices:

Items: x1, x2, …, xn

Value: v1, v2, …, vn

Max Quantity: q1, q2, …, qn

Weight per unit quantity: w1, w2, …, wn

Getaway Truck has a weight limit of B.

Burglar can take “fractional” amount of any item.

How can burglar maximize value of the loot?

• Greedy Algorithm works!

Pick the maximum possible quantity of highest value per weight item.
Continue until weight limit of truck is reached.

10/30/08 COT 5407 17

0-1 Knapsack Problem
• Burglar’s choices:

Items: x1, x2, …, xn

Value: v1, v2, …, vn

Weight: w1, w2, …, wn

Getaway Truck has a weight limit of B.

Burglar cannot take “fractional” amount of item.

How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?

• Need dynamic programming!

10/30/08 COT 5407 18

0-1 Knapsack Problem
• Subproblems?

– V[j, L] = Optimal solution for knapsack problem assuming a truck of weight
limit L and choice of items from set {1,2,…, j}.

– V[n, B] = Optimal solution for original problem

– V[1, L] = easy to compute for all values of L.

• Table of solutions?

– V[1..n, 1..B]

• Ordering of subproblems?

– Row-wise

• Recurrence Relation? [Either xj included or not]

– V[j, L] = max { V[j-1, L],

 vj + V[j-1, L-wj] }

10/30/08 COT 5407 19

1-d, 2-d, 3-d Dynamic Programming

• Classification based on the dimension of the table used to

store solutions to subproblems.

• 1-dimensional DP

– Activity Problem

• 2-dimensional DP

– LCS Problem

– 0-1 Knapsack Problem

– Matrix-chain multiplication

• 3-dimensional DP

– All-pairs shortest paths problem

