11/18/08

Figure 22.4 The progress of the depth-first-search algorithm DFS on a directed graph. As edges
are explored by the algorithm, they are shown as either shaded (if they are tree edges) or dashed
(otherwise). Nontree edges are labeled B, C, or F according to whether they are back, cross, or
forward edges. Vertices are timestamped by discovery time/finishing time.

COT 5407

DFS(6)

No o s wN e

For each vertex u € V[G] do
color[u] < WHITE
n[u] <= NIL
Time < O
For each vertex u € V[G] do
if color[u] = WHITE then
DFS-VISIT(u)

O(m+n)

Depth
First
Search

11/18/08

VW ONOs W

—
=

11.
12.

DFS-VISIT(u)

VisitVertex(u)
Color[u] < GRAY
Time < Time + 1
d[u] < Time
for each v € Adj[u] do
VisitEdge(u,v)
if (v = x[u]) then
if (color[v] = WHITE) then
n[v] < u
DFS-VISIT(v)
color[u] < BLACK
F[u] < Time < Time + 1

COT 5407

Applications of Graph Traversal

» Checking for connectivity

- Number of times statement 7 is executed in DFS(6G)

» Checking for cycles
- Number of times if-statement (statement 8) fails in DFS-Visit(u)

11/18/08 COT 5407 3

Connectivity

A (simple) undirected graph is connected if there exists a path between
every pair of vertices.

If a graph is not connected, then G'(V',E') is a connected component of
the graph G(V,E) if V' is a maximal subset of vertices from V that
induces a connected subgraph. (What is the meaning of maximal?)

The connected components of a graph correspond to a partition of the
set of the vertices. (What is the meaning of partition?)

How to compute all the connected components?
- Use DFS or BFS.

11/18/08 COT 5407 4

Minimum Spanning Tree

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge (b, ¢) and replacing it with the edge (a. k)
yields another spanning tree with weight 37.

11/18/08 COT 5407

11/18/08

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The edges are considered by the algorithm in sorted order by
weight. An arrow points to the edge under consideration at each step of the algorithm. If the edge
joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.

COT 5407

11/18/08 COT 5407

Minimum Spanning Tree

MST-KRUSKAL(G, w)
A0
for each vertex v € V|G|

do MAKE-SET(v)
sort the edges of £/ by nondecreasing weight w
for each edge (u,v) € F, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A «— AU {(u,v)}
UNION (u, v)

o0l B ST i BB 19 1=

return A

(2 (h)

0]

Figure23.5 The execution of Prim’s algorithm on the graph from Figure 23.1, The root vertex is a.
Shaded edges are in the tree being grown, and the vertices in the tree are shown in black. At each
step of the algorithm, the vertices in the tree determine a cut of the graph, and a light edge crossing

11 / 18 /08 the cut is added to the tree. In the second step, for example, the algorithm has a choice of adding
either edge (b, ¢) or edge (a, /) to the tree since both are light edges crossing the cut,

11/18/08

MST-KRUSKAL(G, w)
A—10
for each vertex v € VI[(]

do MAKE-SET(v)
sort the edges of E by nondecreasing weight w
for each edge (u,v) € E, in order by nondecreasing weigh

do if FIND-SET(u) # FIND-SET(v)

then A — AU {(u,v)}
UNION(u, v)

PR Rl SN

return A

MST-PRIM(G, w,)
Q— V|G
for each u € ¢}
do keylu] — oo

keylr] — 0
m|r] «— NIL
while @ # ()

do v +— EXTRACT-MIN(Q)

for each v € Adj|u
do if v € () and w(u, v) < key|v]
then 7/v| «— u
keylv] +— w(u,v)

==t e L

_ O

10

Proof of Correctness: MST Algorithms

11/18/08

(a)

Figure 23.2 Two ways of viewing a cut (S, ¥ — §) of the graph from Figure 23.1. (a) The vertices
in the set § are shown in black, and those in V — § are shown in white. The edges crossing the cut are
those connecting white vertices with black vertices. The edge (d, ¢) is the unique light edge crossing
the cut. A subset A of the edges is shaded; note that the cut (S, V — §) respects A, since no edge
of A crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in
the set V — § on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on
the right.

COT 5407

11

11/18/08

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates are shown within the vertices, and shaded edges indicate predecessor val-
ues. Black vertices are in the set S, and white vertices are in the min-priority queue @ = V — §.
(a) The situation just before the first iteration of the while loop of lines 4-8. The shaded vertex has
the minimum o value and is chosen as vertex u in line 5. (b)=(f) The situation after each successive
iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next
iteration. The & and =t values shown in part (f) are the final values,

COT 5407 12

Dijkstra’s Single Source Shortest Path Algorithm

DIJKSTRA(G, w, 8)
1. // INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex v € V|G|
do d|v| —
7|v] «+— NIL

dls| + 0
2. S« 10
3. @+« V|G
4. while Q # 0
5, do u +— EXTRACT-MIN(Q)
6. S — SU{u}
7. for each v € Adjlu|
8. do // RELAX(u, v, w)

if djv] > dlu] + w(u, v)
then d[{’v}} — d|u] + w(u,v)

13

11/18/08

DIIKSTRA(G, w, s)
1. // INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex v € V(]
do djv] «+ oo
7|v| — NIL

dls| — 0
2. S« 10
3. Q< VJ]
4. while Q # 0
5, do u — EXTRACT-MIN(Q)
6. S — SU{u}
7. for each v € Adj|u)
8. do // RELAX(u, v, w)

if djv] > dlu] + w(u,v)
then d[[*v]} — du] + wlu,v)

MST-PRIM(G, w,7)
Q@ — V|G
for cach u e @)
do key[u] «— oo

keylr] <0
7[r] « NIL
while @ #£ 0

do u +— EXTRACT-MIN(Q)

for each v € Adj[u]
do if v € @ and wiu,v) < key[v]
then 7[v] «—

keylo] — w(u,v) 14

DR L e o o e B

—_

All Pairs Shortest Path Algorithm

* Invoke Dijkstra's SSSP algorithm n times.

» Or use dynamic programming. How?

11/18/08 COT 5407

15

11/18/08

([0 3 8 oo

' oo 0 oo 1
DO=]|000 4 0 o
2 oo -5 0

\oo o oo 6

(0 3 8 o

o0 0 oo 1

DW= 4 0 o
2 5 -5 0

\oco o0 oo 6

(0 3 8 4

oo 0 o0 1

D=l 4 05
2 5 -5 0

\oo 00 o 6

rO 3 8 4

o0 0 oo 1
DA=loo. 4 05
2 -1 -5 0

\o©o oo o0 6

] 3 -1 4

3 0 -4 1
D=7 4 05
2 -1 -5 0

\ 8 5 1 6

(0 1 =3 2

3 0 4 1

DO =7 4 0 5
2 -1 -5 0

\8 5 1 6

Figure 25.4 The sequence of matrices D®) and TT®) computed by the Floyd-Warshall algorithm

for the graph in Figure 25.1.

88wk
g - —

|
~ B | |
om8 ua
o

|-
(= SHE

-4

11
=2

—4\
3
-2
0
—4
)
3

-2
0)

no® =

n® =

noe =

n® =

@ —

n® =

NIL

NIL
NIL

NIL

NIL

NIL

NIL

NIL

NIL

Z,
W W w -
=

uwméw

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

NIL
NIL

NIL

-h-h-é-l-‘-h

NIL

L

NIL

NIL
NIL

NIL

NIL
NIL

U‘IEMNUI

NIL
NIL
NIL)

1)

NIL

NIL /

NIL)

e e]

1
NIL)

1
'
1
1

NIL

16

Figure 14.38

Worst-case running times of various graph algorithms

TYPE OF GRAPH PROBLEM RUNNING TIME COMMENTS

Unweighted O(|E)) Breadth-first search
Weighted, no negative edges O(|ENog|V]) Dijkstra's algorithm
Weighted, negative edges O(E| - VD Bellman—Ford algorithm
Weighted, acyclic O(\E]) Uses topological sort
11/18/08 COT 5407 17

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

