Correctness of Dijkstra's algorithm

- Invariant: When vertex u is deleted from the priority queue, d[u] is the correct length of the shortest path from the source s to vertex u.
 - Additionally, the value d[u] will never change after that iteration.

Proof:

- It is true for the first iteration. Why?
- It is true for all subsequent iterations. Why?
 - Because you always pick the vertex with the smallest d[] value.

Figure 14.38

Worst-case running times of various graph algorithms

Shortest Path between a pair of vertices

Type of Graph Problem	Running Time	Comments
Unweighted	O(E)	Breadth-first search
Weighted, no negative edges	$O(E \log V)$	Dijkstra's algorithm
Weighted, negative edges	$O(E \cdot V)$	Bellman-Ford algorithm
Weighted, acyclic	O(E)	Uses topological sort

Polynomial-time computations

- An algorithm has time complexity O(T(n)) if it runs in time at most cT(n) for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is O(p(n)), where p(n) is polynomial in n.

Polynomials

- If f(n) = polynomial function in n,then $f(n) = O(n^c)$, for some fixed constant c
- If f(n) = exponential (super-polynomial) function in n, then f(n) = $\omega(n^c)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e., f(g(n)) = polynomial if f() and g() are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.

The class P

- A problem is in P if there exists a polynomial-time algorithm that solves the problem.
- Examples of P
 - DFS: Linear-time algorithm exists
 - Sorting: O(n log n)-time algorithm exists
 - Bubble Sort: Quadratic-time algorithm O(n2)
 - APSP: Cubic-time algorithm O(n3)
- P is therefore a class of problems (not algorithms)!

The class MP

- A problem is in \mathcal{NP} if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in \mathcal{NP} if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems in \mathcal{P} are in \mathcal{P}

TSP: Traveling Salesperson Problem

· Input:

- Weighted graph, G
- Length bound, B

· Output:

- Is there a traveling salesperson tour in G of length at most B?
- Is TSP in \(\mathcal{NP} ?\)
 - YES. Easy to verify a given solution.
- Is TSP in ??
 - OPEN!
 - One of the greatest unsolved problems of this century!
 - Same as asking: Is $\mathcal{P} = \mathcal{NP}$?

So, what is *NP-Complete*?

- NP Complete problems are the "hardest" problems in NP.
- We need to formalize the notion of "hardest".

Terminology

· Problem:

- An <u>abstract problem</u> is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$p: I \rightarrow S$$

- An $\underline{instance}$ of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing the set of all instances (I.e., possible inputs) and the set of corresponding outputs defines a problem.

Algorithm:

- An algorithm that solves problem p must give correct solutions to all instances of the problem.
- Polynomial-time algorithm:

- Input Length:
 - length of an encoding of an instance of the problem.
 - Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
 - Is the maximum time/space required by the algorithm on any input of length n.
- Worst-case time/space complexity of a problem
 - UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
 - LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - LOWER BOUND ≤ UPPER BOUND
- Complexity Class P:
 - Set of all problems p for which polynomial-time algorithms exist

Decision Problems:

- These are problems for which the solution set is {yes, no}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B?
- Complement of a decision problem:
 - These are problems for which the solution is "complemented".
 - Example: Does a given graph NOT have an odd cycle?
 - Example: Is every TSP tour of a given weighted graph of length greater than B?
- Optimization Problems:
 - These are problems where one is maximizing (or minimizing) some objective function.
 - Example: Given a weighted graph, find a MST.
 - Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
 - Given a problem instance i and a certificate s, is s a solution for instance i?

- Complexity Class ? :
 - Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class \(\mathcal{P} \):
 - Set of all problems p for which polynomial-time verification algorithms exist.
- · Complexity Class co-NP:
 - Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in np.

- Reductions: $p_1 \rightarrow p_2$
 - A problem p_1 is reducible to p_2 , if there exists an algorithm R that takes an instance i_1 of p_1 and outputs an instance i_2 of p_2 , with the constraint that the solution for i_1 is YES if and only if the solution for i_2 is YES.
 - Thus, R converts YES (NO) instances of p_1 to YES (NO) instances of p_2 .
- Polynomial-time reductions: p₁
 p₂
 - Reductions that run in polynomial time.

```
• If p_1 \xrightarrow{P} p_2, then  -\text{If } p_2 \text{ is easy, then so is } p_1. \qquad p_2 \in \mathcal{P} \implies p_1 \in \mathcal{P}   -\text{If } p_1 \text{ is hard, then so is } p_2. \qquad p_1 \notin \mathcal{P} \implies p_2 \notin \mathcal{P}
```

What are MP-Complete problems?

- These are the hardest problems in \mathcal{W} .
- A problem p is NP Complete if
 - there is a polynomial-time reduction from every problem in \mathcal{W} to p.
 - p ∈ *n*P
- How to prove that a problem is NP Complete?

- · Cook's Theorem: [1972]
 - -The <u>SAT</u> problem is NP Complete.

Steve Cook, Richard Karp, Leonid Levin

NP-Complete vs NP-Hard

- · A problem p is NP Complete if
 - there is a polynomial-time reduction from every problem in \mathcal{W} to p.
 - p ∈ *n*P
- · A problem p is NP-Hard if
 - there is a polynomial-time reduction from every problem in \mathcal{W} to p.

The SAT Problem: an example

Consider the boolean expression:

```
C = (a \lor \neg b \lor c) \land (\neg a \lor d \lor \neg e) \land (a \lor \neg d \lor \neg c)
```

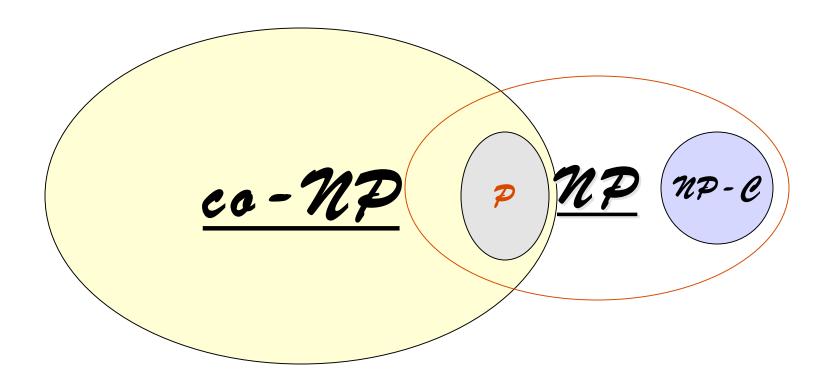
- Is C satisfiable?
- Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?
- Set a = True and d = True. The others can be set arbitrarily, and C will be true.
- If C has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are n boolean variables, then there are 2ⁿ different truth value assignments.
- · However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

 Input: Boolean expression C in Conjunctive normal n variables and m clauses. form (CNF) in

- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge ... \wedge C_m$
 - Where each $C_i = (y_1^i \vee y_2^i \vee \cdots \vee y_{k_i}^i)$
 - And each $\in \{x_1^i, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression ${\cal C}$ that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_T for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
 - · How to now prove Cook's theorem? Is SAT in mp?
 - Can every problem in \mathcal{NP} be poly. reduced to it?

The problem classes and their relationships



More NP-Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge ... \wedge C_m$ - Where each $C_i = (y_1^i \vee y_2^i \vee y_3^i)$ - And each $\in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is NP-Complete.

More *NP-Complete* problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
 - Let $C = C_1 \wedge C_2 \wedge ... \wedge C_m$ - Where each $C_i = (y_1^i \vee y_2^i)$ - And each $\in \{x_1, \neg x_1, x_2, \neg x_2, ..., x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

2SAT is in P.

3SAT is NP-Complete

- 35AT is in 7/2.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in np can be reduced in polynomial time to 3SAT. Therefore, 3SAT is np-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C' of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C' is satisfiable.

3SAT is NP-Complete

- Let C be an instance of SAT with clauses $C_1, C_2, ..., C_m$
- Let C_i be a disjunction of k > 3 literals.

$$C_i = y_1 \vee y_2 \vee ... \vee y_k$$

Rewrite C_i as follows:

$$C'_{i} = (y_{1} \vee y_{2} \vee z_{1}) \wedge (\neg z_{1} \vee y_{3} \vee z_{2}) \wedge (\neg z_{2} \vee y_{4} \vee z_{3}) \wedge ...$$

$$(\neg z_{k-3} \vee y_{k-1} \vee y_{k})$$

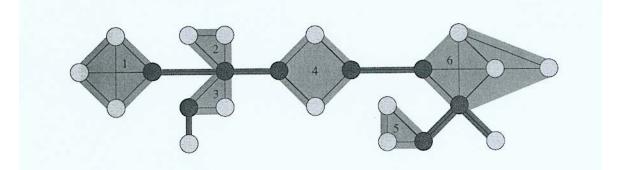
• Claim: C_i is satisfiable if and only if C'_i is satisfiable.

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- · How? Homework problem!

The CLIQUE Problem

· A clique is a completely connected subgraph.

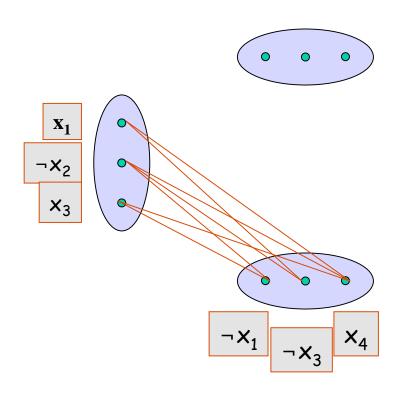


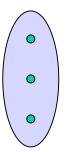
CLIQUE

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k?

CLIQUE is NP-Complete

- · CLIQUE is in WP.
- Reduce 3SAT to CLIQUE in polynomial time.
- $F = (x_1 \lor \neg x_2 \lor x_3) (\neg x_1 \lor \neg x_3 \lor x_4) (x_2 \lor x_3 \lor \neg x_4) (\neg x_1 \lor \neg x_2 \lor x_3)$



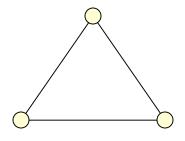


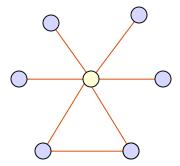
F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

Vertex Cover

A vertex cover is a set of vertices that "covers" all the edges of the graph.

Examples





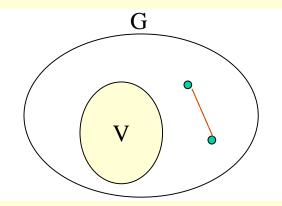
Vertex Cover (VC)

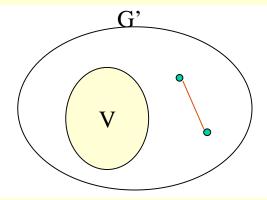
Input: Graph G, integer k

Question: Does G contain a vertex cover of size k?

· VC is in W.

- polynomial-time reduction from CLIQUE to VC.
- · Thus VC is NP Complete.





Claim: G' has a clique of size k' if and only if G has a VC of size k = n - k'

Hamiltonian Cycle Problem (HCP)

Input: Graph G

Question: Does G contain a hamiltonian cycle?

• HCP is in \(\mathbb{M} \).

- There exists a polynomial-time reduction from 3SAT to HCP.
- · Thus HCP is NP Complete.
- Notes/animations by Yi Ge!