FALL 2008: COT 5407 Intro. to Algorithms

[Homework 1; Due Sep 23 at start of class]
General submission guidelines and policies: Add the following signed statement. Without this statement, your homework will not be graded.

I have adhered to the collaboration policy for this class. In other WORDS, EVERYTHING WRITTEN DOWN IN THIS SUBMISSION IS MY OWN WORK. For problems where I received any help, I have cited the source, and/OR NAMED THE COLLABORATOR.

Read the handout on Homework guidelines and collaboration policy from your course website before you start on this homework. This is very important.

Problems

0. (Regular) Did you follow the instructions above?
1. (Exercise) Write down the time complexities of performing LinearSearch and BiNARYSEARCH in a sorted array of n elements.
2. (Exercise) Write down the precise invariants for each of the following algorithms: SelectionSort, InsertionSort, BubbleSort, ShakerSort, and Merge (not MergeSort).
3. (Regular) Given two monotonically increasing functions, $f(n)$ and $g(n)$, prove or disprove:

$$
\min (f(n), g(n))=\Theta(f(n)+g(n)) .
$$

Redo the above problem with min replaced with max.
4. (Regular) (Exercise 4-1(c,d), p85) Use the Master method to solve the recurrences in (a), (b), and (c). You may assume that $T(n)$ is constant for $n<2$.
(a) $T(n)=15 T(n / 4)+4 n^{2}$.
(b) $T(n)=27 T(n / 3)+3 n^{3}$.
(c) $T(n)=18 T(n / 2)+2 n^{4}$.
5. (Regular) Solve one of the problems in Problem 4 above using the Substitution method.
6. (Regular) Show that for any real constants a and b, where $b>0$,

$$
(n-a)^{b}=\Theta\left(n^{b}\right)
$$

Note that $f(n)=\Theta(g(n)$ if and only if $f(n)=O(g(n))$ and $g(n)=O(f(n))$.
7. (Exercise) (Exercise 3-2(e), p58) If $f(n)=n^{\log _{2} c}$ and $g(n)=c^{\log _{2} n}$, indicate which of these relationships are true and prove your answers: $f(n)=O(g(n)), f(n)=\Omega(g(n))$, and $f(n)=\Theta(g(n))$.
8. (Extra Credit) In our first class (Sep 2), we discussed and analyzed a simple algorithm for the SEARCH problem. We discussed two variants - one where X, the number to be searched, was bounded on both sides, and another where x was bounded below, but unbounded above. Binary search was the best strategy for the first version. The best strategy for the second version involved doing a doubling search followed by a binary search. This could be thought of as doing a LinearSearch for m, the smallest exponent of 2 greater than x. What if we consider doing doubling search for m ? Can we push this even further? Analyze the best algorithm for this problem.

