
FALL 2008: COT 5407 Intro. to Algorithms
[Homework 6; Due Dec 2 (NOT Nov 30) at start of class]

General submission guidelines and policies: Add the following signed state-
ment. Without this statement, your homework will not be graded.

I have adhered to the collaboration policy for this class. In other
words, everything written down in this submission is my own work.
For problems where I received any help, I have cited the source,
and/or named the collaborator.

Read the handout on Homework guidelines and collaboration policy.

Problems

31. (Regular) Modify DFS or BFS to design an algorithm called CheckForODDCycle
for checking whether a given connected, undirected, unweighted, simple graph G(V, E)
has an odd length cycle. Assume that the input graph has n vertices and m edges.
Provide an argument why you think the algorithm is correct and analyze its time
complexity.

32. (Regular) Design an efficient algorithm to compute the in-degree and out-degree of
every vertex in a given directed graph G(V, E). The in-degree (out-degree, resp.) of
a vertex is defined as the number of edges directed into (out of, resp.) that vertex.
Assume that the input graph has n vertices and m edges.

33. (Exercise) Design an efficient algorithm that takes a directed graph G(V, E) as input
and outputs a directed graph G′(V, E ′) where every edge is reversed. In other words,
for every edge e = (u, v) ∈ E, there is an edge e′ = (v, u) ∈ E ′ and vice versa. Assume
that the input graph has n vertices and m edges.

34. (Regular) You are given a “probabilistic” directed graph G(V, E), where each directed
edge e is associated with the probability of taking that edge and is denoted by p(e).
Also, assume that the probability of taking a path is simply the product of the prob-
abilities of taking each of the edges on that path. Given a source vertex s, design an
algorithm that computes the probabilities of the most probable simple paths to every
vertex. Recall that a simple path is one that does not revisit any vertices.

35. (Exercise) Given a weighted undirected graph G with non-negative edge weights, if
the edge weights are all increased by a positive additive constant, can the minimum
spanning tree change? Can the output of Dijkstra’s algorithm change for some (fixed)
start vertex s? What if they are decreased by a positive constant? What if the edge
weights are all multiplied by a positive constant? Give (very) simple examples, if you
claim that they can change.



36. (Exercise) Does Dijkstra’s algorithm work correctly if some edge weights are negative?
Does it work correctly if some edge weights are negative, but there are no negative
weight cycles?

37. (Regular) Can Dijkstra’s algorithm work be modified to work correctly if all edges
have non-negative weights, but we need to compute the longest simple path from the
source to every vertex?

38. (Extra Credit) Problem 23.2-7, page 574.

39. (Extra Credit) Problem 23-3, page 577.

40. (Regular) Modify Floyd-Warshall’s algorithm to output the number of distinct short-
est paths between every pair of vertices in an unweighted undirected graph.


