COP 5407: Solutions to Midterm Review Problems; Spring 2017

1. State and prove the correct relationship $(O, o, \Omega, \omega, \Theta)$ between the functions $f(n)=$ $n^{2} \log n+2 n$ and $g(n)=n^{3}+4 n \log n$.
Claim: $f(n)=O(g(n))$.
We prove this claim by showing that there exists $c, n_{0}>0$

$$
\begin{aligned}
n^{2} \log n+2 n & \leq c\left(n^{3}+4 n \log n\right), \forall n \geq n_{0} \\
i . e ., n \log n+2 & \leq c\left(n^{2}+4 \log n\right), \forall n \geq n_{0}
\end{aligned}
$$

which is true for $n_{0}=2$ and $c=1$.
Claim: $f(n)=o(g(n))$.
We prove this claim by showing that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$. This is easily shown by dividing the numerator and denominator by n^{3}, giving us

$$
\lim _{n \rightarrow \infty} \frac{n^{2} \log n+2 n}{n^{3}+4 n \log n}=\frac{\frac{\log n}{n}+\frac{2}{n}}{1+\frac{4 \log n}{n^{2}}}=0
$$

Note that both terms in the numerator go to 0 as n tends to ∞, while in the denominator, one term goes to 0 , while the other is 1 . Hence the claim.
Claim: $f(n)$ has no other relationship (Ω, ω, Θ) with $g(n)$.
Since $f(n)=o(g(n))$, we know that $f(n)$ is asymptotically slower than $g(n)$. Thus, neither $f(n)=\Omega(g(n))$ nor $f(n)=\omega(g(n))$ can possibly be true. Since $f(n)=\Omega(g(n))$ is false, $f(n)=\Theta(g(n))$ is also false.
2. Solve the following recurrence relations using any of the 3 methods we have discussed in class:
(a) $T(n)=2 T(2 n / 3)+O(n)$

Solution: We replace $O(n)$ by $c n$ for some positive constant c. We will now argue that Case 1 of Master theorem applies here. First, $a=2, b=3 / 2=1.5$, and $\log _{1.5} 2>1+\epsilon$, for some positive ϵ. Thus, $f(n)=c n^{1}=O\left(n^{\log _{1.5}^{2-\epsilon}}\right)$ and $T(n)=\Theta\left(n^{\log _{1.5} 2}\right)$.
(b) $T(n)=\frac{2}{3} T(2 n)+O(n)$

Solution: We replace $O(n)$ by $c n$ for some positive constant c. We will now argue that Case 3 of Master theorem applies here. First, $a=3 / 2=1.5, b=2$, and $\log _{2} 1.5<1-\epsilon$, for some positive ϵ. Furthermore, $a f(n / b) \leq d f(n)$ is satisfied because $\frac{3 n}{4} \leq d n$, for $d=3 / 4<1$. Thus, $T(n)=\Theta(n)$.
(c) $T(n)=2 T(2 n / 3)+O\left(n^{2}\right)$
(d) $T(n)=2 T(n / 2)+O\left(n^{2}\right)$
(e) $T(n)=2 T(n / 4)+1$

Solution: Case 1 of Master theorem applies here because $a=2, b=4, n^{\log _{4} 2}=$ $n^{0.5}=\sqrt{n}$, and $f(n)=1=O\left(n^{0.5-\epsilon}\right)$. Thus $T(n)=\Theta(\sqrt{n})$.
(f) $T(n)=2 T(n / 4)+\sqrt{n}$

Solution: Case 2 of Master theorem applies here because $a=2, b=4$, and $n^{\log _{4} 2}=n^{0.5}=\sqrt{n}=f(n)$. Thus $T(n)=\Theta(\sqrt{n} \log n)$.
(g) $T(n)=2 T(n / 4)+n$

Solution: Case 3 of Master theorem applies here because $a=2, b=4, n^{\log _{4} 2}=$ $n^{0.5}=\sqrt{n}$, and $f(n)=n^{1}=\Omega\left(n^{0.5+\epsilon}\right)$. Furthermore, $a f(n / b) \leq c f(n)$ is satisfied because $2 n / 4 \leq c n$, for $c=1 / 2<1$. Thus $T(n)=\Theta(n)$.
(h) $T(n)=2 T(n / 4)+n^{2}$

Solution: Case 3 of Master theorem applies here because $a=2, b=4, n^{\log _{4} 2}=$ $n^{0.5}=\sqrt{n}$, and $f(n)=n^{2}=\Omega\left(n^{0.5+\epsilon}\right)$. Furthermore, $a f(n / b) \leq c f(n)$ is satisfied because $2(n / 4)^{2} \leq c n^{2}$, for $c=1 / 8<1$. Thus $T(n)=\Theta\left(n^{2}\right)$.
3. The standard implementation of InSERTIONSORT (shown below) operates by inserting (in iteration j) $A[j]$ into its appropriate location in the sorted subarray $A[1 \ldots j-$ 1]. However, the right location is computed by a linear search (while-loop in lines 4 through 7), which has a worst-case time complexity linear in its length $(O(j))$. Can INSERTIONSORT be speeded up by replacing the linear search by a binary search with a logarithmic worst-case time complexity? What would be the time complexity of the modified Insertionsort?

```
Algorithm 1 InsertionSort \((A)\)
    for \(j \leftarrow 2\) to length \([A]\) do
        \(k e y \leftarrow A[j]\)
        \(i \leftarrow j-1 \quad \triangleright \operatorname{Insert} A[j]\) into sorted subarray \(A[1 \ldots j-1]\)
        while \(i>0\) and \(A[i]>\) key do
            \(A[i+1] \leftarrow A[i]\)
            \(i \leftarrow i-1\)
        end while
        \(A[i+1] \leftarrow k e y\)
    end for
```

Solution: By replacing linear search with binary search, we would reduce the worstcase number of comparisons made by the algorithm from $O\left(n^{2}\right)$ to $O(n \log n)$. This is because the number of comparisons is $O(\log j)$ for the j-th iteration, which when summed over all iterations gives $O(n \log n)$. However, the number of data movements
is exactly the same as that incurred by InsertionSort. Thus the overall worst-case time complexity remains the same.

