1. State and prove the correct relationship $(O, o, \Omega, \omega, \Theta)$ between the functions $f(n) = n^2 \log n + 2n$ and $g(n) = n^3 + 4n \log n$.

Claim: f(n) = O(g(n)).

We prove this claim by showing that there exists $c, n_0 > 0$

$$n^{2}\log n + 2n \leq c(n^{3} + 4n\log n), \forall n \geq n_{0},$$

i.e., $n\log n + 2 \leq c(n^{2} + 4\log n), \forall n \geq n_{0},$

which is true for $n_0 = 2$ and c = 1.

Claim: f(n) = o(g(n)).

We prove this claim by showing that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$. This is easily shown by dividing the numerator and denominator by n^3 , giving us

$$\lim_{n \to \infty} \frac{n^2 \log n + 2n}{n^3 + 4n \log n} = \frac{\frac{\log n}{n} + \frac{2}{n}}{1 + \frac{4 \log n}{n^2}} = 0$$

Note that both terms in the numerator go to 0 as n tends to ∞ , while in the denominator, one term goes to 0, while the other is 1. Hence the claim.

Claim: f(n) has no other relationship (Ω, ω, Θ) with g(n).

Since f(n) = o(g(n)), we know that f(n) is asymptotically slower than g(n). Thus, neither $f(n) = \Omega(g(n))$ nor $f(n) = \omega(g(n))$ can possibly be true. Since $f(n) = \Omega(g(n))$ is false, $f(n) = \Theta(g(n))$ is also false.

- 2. Solve the following recurrence relations using any of the 3 methods we have discussed in class:
 - (a) T(n) = 2T(2n/3) + O(n)

Solution: We replace O(n) by cn for some positive constant c. We will now argue that Case 1 of Master theorem applies here. First, a = 2, b = 3/2 = 1.5, and $\log_{1.5} 2 > 1 + \epsilon$, for some positive ϵ . Thus, $f(n) = cn^1 = O(n^{\log_{1.5} 2 - \epsilon})$ and $T(n) = \Theta(n^{\log_{1.5} 2})$.

(b) $T(n) = \frac{2}{3}T(2n) + O(n)$

Solution: We replace O(n) by cn for some positive constant c. We will now argue that Case 3 of Master theorem applies here. First, a = 3/2 = 1.5, b = 2, and $\log_2 1.5 < 1 - \epsilon$, for some positive ϵ . Furthermore, $af(n/b) \leq df(n)$ is satisfied because $\frac{3n}{4} \leq dn$, for d = 3/4 < 1. Thus, $T(n) = \Theta(n)$.

- (c) $T(n) = 2T(2n/3) + O(n^2)$
- (d) $T(n) = 2T(n/2) + O(n^2)$
- (e) T(n) = 2T(n/4) + 1Solution: Case 1 of Master theorem applies here because $a = 2, b = 4, n^{\log_4 2} = n^{0.5} = \sqrt{n}$, and $f(n) = 1 = O(n^{0.5-\epsilon})$. Thus $T(n) = \Theta(\sqrt{n})$.
- (f) $T(n) = 2T(n/4) + \sqrt{n}$ **Solution:** Case 2 of Master theorem applies here because a = 2, b = 4, and $n^{\log_4 2} = n^{0.5} = \sqrt{n} = f(n)$. Thus $T(n) = \Theta(\sqrt{n} \log n)$.
- (g) T(n) = 2T(n/4) + n

Solution: Case 3 of Master theorem applies here because $a = 2, b = 4, n^{\log_4 2} = n^{0.5} = \sqrt{n}$, and $f(n) = n^1 = \Omega(n^{0.5+\epsilon})$. Furthermore, $af(n/b) \le cf(n)$ is satisfied because $2n/4 \le cn$, for c = 1/2 < 1. Thus $T(n) = \Theta(n)$.

(h) $T(n) = 2T(n/4) + n^2$

Solution: Case 3 of Master theorem applies here because $a = 2, b = 4, n^{\log_4 2} = n^{0.5} = \sqrt{n}$, and $f(n) = n^2 = \Omega(n^{0.5+\epsilon})$. Furthermore, $af(n/b) \leq cf(n)$ is satisfied because $2(n/4)^2 \leq cn^2$, for c = 1/8 < 1. Thus $T(n) = \Theta(n^2)$.

3. The standard implementation of INSERTIONSORT (shown below) operates by inserting (in iteration j) A[j] into its appropriate location in the sorted subarray $A[1 \dots j - 1]$. However, the right location is computed by a linear search (while-loop in lines 4 through 7), which has a worst-case time complexity linear in its length (O(j)). Can INSERTIONSORT be speeded up by replacing the linear search by a binary search with a logarithmic worst-case time complexity? What would be the time complexity of the modified INSERTIONSORT?

Algorithm 1 INSERTIONSORT(A)

1: for $j \leftarrow 2$ to length[A] do $key \leftarrow A[j]$ 2: \triangleright Insert A[j] into sorted subarray $A[1 \dots j - 1]$ $i \leftarrow j - 1$ 3: while i > 0 and A[i] > key do 4: $A[i+1] \leftarrow A[i]$ 5: $i \leftarrow i - 1$ 6: 7: end while $A[i+1] \leftarrow key$ 8: 9: end for

Solution: By replacing linear search with binary search, we would reduce the worstcase number of comparisons made by the algorithm from $O(n^2)$ to $O(n \log n)$. This is because the number of comparisons is $O(\log j)$ for the *j*-th iteration, which when summed over all iterations gives $O(n \log n)$. However, the number of data movements is exactly the same as that incurred by INSERTIONSORT. Thus the overall worst-case time complexity remains the same.