
COP 5407: Solutions to Midterm Review Problems;
Spring 2017

1. State and prove the correct relationship (O, o,Ω, ω,Θ) between the functions f(n) =
n2 log n+ 2n and g(n) = n3 + 4n log n.

Claim: f(n) = O(g(n)).

We prove this claim by showing that there exists c, n0 > 0

n2 log n+ 2n ≤ c(n3 + 4n log n),∀n ≥ n0,

i.e., n log n+ 2 ≤ c(n2 + 4 log n),∀n ≥ n0,

which is true for n0 = 2 and c = 1.

Claim: f(n) = o(g(n)).

We prove this claim by showing that limn→∞
f(n)
g(n)

= 0. This is easily shown by dividing

the numerator and denominator by n3, giving us

lim
n→∞

n2 log n+ 2n

n3 + 4n log n
=

logn
n

+ 2
n

1 + 4 logn
n2

= 0

Note that both terms in the numerator go to 0 as n tends to ∞, while in the denomi-
nator, one term goes to 0, while the other is 1. Hence the claim.

Claim: f(n) has no other relationship (Ω, ω,Θ) with g(n).

Since f(n) = o(g(n)), we know that f(n) is asymptotically slower than g(n). Thus,
neither f(n) = Ω(g(n)) nor f(n) = ω(g(n)) can possibly be true. Since f(n) = Ω(g(n))
is false, f(n) = Θ(g(n)) is also false.

2. Solve the following recurrence relations using any of the 3 methods we have discussed
in class:

(a) T (n) = 2T (2n/3) +O(n)

Solution: We replace O(n) by cn for some positive constant c. We will now
argue that Case 1 of Master theorem applies here. First, a = 2, b = 3/2 = 1.5,
and log1.5 2 > 1 + ε, for some positive ε. Thus, f(n) = cn1 = O(nlog1.5 2−ε) and
T (n) = Θ(nlog1.5 2).

(b) T (n) = 2
3
T (2n) +O(n)

Solution: We replace O(n) by cn for some positive constant c. We will now
argue that Case 3 of Master theorem applies here. First, a = 3/2 = 1.5, b = 2,
and log2 1.5 < 1−ε, for some positive ε. Furthermore, af(n/b) ≤ df(n) is satisfied
because 3n

4
≤ dn, for d = 3/4 < 1. Thus, T (n) = Θ(n).

1



(c) T (n) = 2T (2n/3) +O(n2)

(d) T (n) = 2T (n/2) +O(n2)

(e) T (n) = 2T (n/4) + 1

Solution: Case 1 of Master theorem applies here because a = 2, b = 4, nlog4 2 =
n0.5 =

√
n, and f(n) = 1 = O(n0.5−ε). Thus T (n) = Θ(

√
n).

(f) T (n) = 2T (n/4) +
√
n

Solution: Case 2 of Master theorem applies here because a = 2, b = 4, and
nlog4 2 = n0.5 =

√
n = f(n). Thus T (n) = Θ(

√
n log n).

(g) T (n) = 2T (n/4) + n

Solution: Case 3 of Master theorem applies here because a = 2, b = 4, nlog4 2 =
n0.5 =

√
n, and f(n) = n1 = Ω(n0.5+ε). Furthermore, af(n/b) ≤ cf(n) is satisfied

because 2n/4 ≤ cn, for c = 1/2 < 1. Thus T (n) = Θ(n).

(h) T (n) = 2T (n/4) + n2

Solution: Case 3 of Master theorem applies here because a = 2, b = 4, nlog4 2 =
n0.5 =

√
n, and f(n) = n2 = Ω(n0.5+ε). Furthermore, af(n/b) ≤ cf(n) is satisfied

because 2(n/4)2 ≤ cn2, for c = 1/8 < 1. Thus T (n) = Θ(n2).

3. The standard implementation of insertionSort (shown below) operates by inserting
(in iteration j) A[j] into its appropriate location in the sorted subarray A[1 . . . j −
1]. However, the right location is computed by a linear search (while-loop in lines 4
through 7), which has a worst-case time complexity linear in its length (O(j)). Can
insertionSort be speeded up by replacing the linear search by a binary search with
a logarithmic worst-case time complexity? What would be the time complexity of the
modified insertionSort?

Algorithm 1 InsertionSort(A)

1: for j ← 2 to length[A] do
2: key ← A[j]
3: i← j − 1 . Insert A[j] into sorted subarray A[1 . . . j − 1]
4: while i > 0 and A[i] > key do
5: A[i+ 1]← A[i]
6: i← i− 1
7: end while
8: A[i+ 1]← key
9: end for

Solution: By replacing linear search with binary search, we would reduce the worst-
case number of comparisons made by the algorithm from O(n2) to O(n log n). This
is because the number of comparisons is O(log j) for the j-th iteration, which when
summed over all iterations gives O(n log n). However, the number of data movements

2



is exactly the same as that incurred by InsertionSort. Thus the overall worst-case
time complexity remains the same.

3


