COP 5407: SOLUTIONS TO MIDTERM REVIEW PROBLEMS;
Spring 2017

1. State and prove the correct relationship (O, 0, w, ©) between the functions f(n) =
n?logn + 2n and g(n) = n® + 4nlogn.
Claim: f(n) = O(g(n)).
We prove this claim by showing that there exists ¢,ng > 0

n*logn +2n < c(n® +4nlogn),Vn > ny,
i.e.,nlogn+2 < c(n®+4logn),Vn > ny,

which is true for ng = 2 and ¢ = 1.
Claim: f(n) = o(g(n)).
(n)

We prove this claim by showing that lim,, ) = 0. This is easily shown by dividing

the numerator and denominator by n3, giving us

logn 2
n + n

n?logn + 2n
im =
n—oond +4nlogn 1+ Aogn

Note that both terms in the numerator go to 0 as n tends to oo, while in the denomi-
nator, one term goes to 0, while the other is 1. Hence the claim.

Claim: f(n) has no other relationship (2, w, ©) with g(n).

Since f(n) = o(g(n)), we know that f(n) is asymptotically slower than g(n). Thus,
neither f(n) = Q(g(n)) nor f(n) = w(g(n)) can possibly be true. Since f(n) = Q(g(n))
is false, f(n) = O(g(n)) is also false.

2. Solve the following recurrence relations using any of the 3 methods we have discussed
in class:

(a) T(n) =2T(2n/3) + O(n)
Solution: We replace O(n) by cn for some positive constant ¢. We will now
argue that Case 1 of Master theorem applies here. First, a = 2,b = 3/2 = 1.5,

and log, -2 > 1 + ¢, for some positive €. Thus, f(n) = cn' = O(n'°81527¢) and
T(n) = O(n'e152),

(b) T(n) = 2T(2n) + O(n)
Solution: We replace O(n) by cn for some positive constant ¢. We will now
argue that Case 3 of Master theorem applies here. First, a = 3/2 = 1.5,b = 2,

and log, 1.5 < 1—¢, for some positive e. Furthermore, af(n/b) < df(n) is satisfied
because 2 < dn, for d = 3/4 < 1. Thus, T(n) = O(n).

1



(c) T(n)=2T(2n/3) + O(n?)

(d) T(n)=2T(n/2) + O(n?)

(e) T(n)=2T(n/4)+1
Solution: Case 1 of Master theorem applies here because a = 2,b = 4, nl*81? =
n®® = /n, and f(n) =1 = 0(n%5~¢). Thus T'(n) = O(y/n).

(f) T(n) =2T(n/4)+ /n
Solution: Case 2 of Master theorem applies here because a = 2,b = 4, and
nlogi? = n05 = /n = f(n). Thus T'(n) = O(y/nlogn).

(g) T(n) =2T(n/4) +n
Solution: Case 3 of Master theorem applies here because a = 2,b = 4, n'°8:? =
n%% =y/n, and f(n) = n' = Q(n"57¢). Furthermore, af(n/b) < cf(n) is satisfied
because 2n/4 < ¢n, for ¢ = 1/2 < 1. Thus T'(n) = O(n).

(h) T(n) =2T(n/4) +n?
Solution: Case 3 of Master theorem applies here because a = 2,b = 4, n'°812 =
n%% = y/n, and f(n) = n? = Q(n®°*¢). Furthermore, af(n/b) < cf(n) is satisfied
because 2(n/4)* < en?, for ¢ = 1/8 < 1. Thus T'(n) = O(n?).

3. The standard implementation of INSERTIONSORT (shown below) operates by inserting
(in iteration j) A[j] into its appropriate location in the sorted subarray A[l...j —
1]. However, the right location is computed by a linear search (while-loop in lines 4
through 7), which has a worst-case time complexity linear in its length (O(j)). Can
INSERTIONSORT be speeded up by replacing the linear search by a binary search with
a logarithmic worst-case time complexity? What would be the time complexity of the
modified INSERTIONSORT?

Algorithm 1 INSERTIONSORT(A)

1: for j < 2 to length[A] do
2 key < Alj]

3 i+—j—1 > Insert A[j] into sorted subarray A[l...j — 1]
4 while i > 0 and A[i] > key do
5: Ali + 1] + Al
6 141—1

7 end while

8 Ali + 1] < key
9: end for

Solution: By replacing linear search with binary search, we would reduce the worst-
case number of comparisons made by the algorithm from O(n?) to O(nlogn). This
is because the number of comparisons is O(logj) for the j-th iteration, which when
summed over all iterations gives O(nlogn). However, the number of data movements



is exactly the same as that incurred by INSERTIONSORT. Thus the overall worst-case
time complexity remains the same.



