Name:

COP 5407: Intro. to Algorithms MIDTERM REVIEW; Spring 2017

1. Short Questions

(a) [10] State and prove the correct relationship (O, 0,2, w, ©) between the functions
f(n) =n%logn + 2n and g(n) = n® + 4nlogn.

(b) Solve the following recurrence relations using any of the 3 methods we have dis-
cussed in class:

i. T(n) =2T(2n/3) + O(n)
ii. T(n) = 27°(2n) + O(n)
iii. T'(n) = 2T(2n/3) + O(n?)
iv. T(n)=2T(n/2)+ O(n?)
v. T(n) =2T(n/4) +1
vi. T(n) =2T(n/4) +/n

vii. T(n) =2T(n/4)+n

viii. T(n) = 2T (n/4) + n?

(¢) The standard implementation of INSERTIONSORT (shown below) operates by in-
serting (in iteration j) A[j] into its appropriate location in the sorted subarray
A[l...j — 1]. However, the right location is computed by a linear search (while-
loop in lines 4 through 7), which has a worst-case time complexity linear in its
length (O(j)). Can INSERTIONSORT be speeded up by replacing the linear search
by a binary search with a logarithmic worst-case time complexity? What would
be the time complexity of the modified INSERTIONSORT?

Algorithm 1 INSERTIONSORT(A)

1. for j < 2 to length[A] do

2 key < Alj]

3 i<—j—1 > Insert A[j] into sorted subarray A[l...j — 1]
4 while i > 0 and A[i] > key do

5: Ali + 1] + Al
6:
7

3
9:

1+1i—1
end while
Ali 4+ 1] « key
end for




