
Name:

COP 5407: Intro. to Algorithms Midterm Review; Spring 2017

1. Short Questions

(a) [10] State and prove the correct relationship (O, o,Ω, ω,Θ) between the functions
f(n) = n2 log n + 2n and g(n) = n3 + 4n log n.

(b) Solve the following recurrence relations using any of the 3 methods we have dis-
cussed in class:

i. T (n) = 2T (2n/3) + O(n)

ii. T (n) = 2
3
T (2n) + O(n)

iii. T (n) = 2T (2n/3) + O(n2)

iv. T (n) = 2T (n/2) + O(n2)

v. T (n) = 2T (n/4) + 1

vi. T (n) = 2T (n/4) +
√
n

vii. T (n) = 2T (n/4) + n

viii. T (n) = 2T (n/4) + n2

(c) The standard implementation of insertionSort (shown below) operates by in-
serting (in iteration j) A[j] into its appropriate location in the sorted subarray
A[1 . . . j − 1]. However, the right location is computed by a linear search (while-
loop in lines 4 through 7), which has a worst-case time complexity linear in its
length (O(j)). Can insertionSort be speeded up by replacing the linear search
by a binary search with a logarithmic worst-case time complexity? What would
be the time complexity of the modified insertionSort?

Algorithm 1 InsertionSort(A)

1: for j ← 2 to length[A] do
2: key ← A[j]
3: i← j − 1 . Insert A[j] into sorted subarray A[1 . . . j − 1]
4: while i > 0 and A[i] > key do
5: A[i + 1]← A[i]
6: i← i− 1
7: end while
8: A[i + 1]← key
9: end for

2.

1


