
1/17/17 COT 5407 1

COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A; Phone: x3748

giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

1/17/17 COT 5407 2

Sorting Algorithms
•  SelectionSort
•  InsertionSort
•  BubbleSort
•  ShakerSort
•  MergeSort
•  HeapSort
•  QuickSort
•  Bucket & Radix Sort
•  Counting Sort

1/17/17 COT 5407 3

Definitions
Abstract Problem: defines a function from any allowable input

to a corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an

instance of a problem as input and produces the correct
output

An Algorithm must halt on every input with correct output.

1/17/17 COT 5407 4

Algorithm Analysis
•  Worst-case time complexity*
•  (Worst-case) space complexity
•  Average-case time complexity

Worst-Case Analysis
Two Techniques:
1.  Counts and Summations:

§  Count number of steps from pseudocode and add
2.  Recurrence Relations:

§  Use invariant, write down recurrence relation and solve it

We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

Compute the worst possible time of all input instances of
length N.

1/17/17 COT 5407 5

Definition of big-Oh
•  We say that

§  F(n) = O(G(n))
 If there exists two positive constants, c and n0, such that

§  For all n ≥ n0, we have F(n) ≤ c G(n)
•  Thus, to show that F(n) = O(G(n)), you need to find two positive

constants that satisfy the condition mentioned above
•  Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of

c, there does not exist a positive constant n0 that satisfies the condition
mentioned above

1/17/17 COT 5407 6

1/17/17 COT 5407 7

SelectionSort – Worst-case analysis

N-p comparisons

3 data movements

SelectionSort: Worst-Case Analysis
•  Data Movements

•  Number of Comparisons

•  Time Complexity = O(N2)

1/17/17 COT 5407 8

SelectionSort

Data Movements

In pth iteration, number of data movements = 3.

Thus, for p = 1, . . . , N , number of data movements

=

NX

p=1

3 = 3⇥N = O(N)

Therefore, the number of data movements in SelectionSort is O(N).

Number of Comparisons

In pth iteration, number of comparisons = N � p.
Thus, for p = 1, . . . , N , number of comparisons

=

NX

p=1

(N � p)

=

NX

p=1

N �
NX

p=1

p

= (N ⇥N)� (N)(N + 1)/2

= O(N2
)

Therefore, the number of comparisons in SelectionSort is O(N2
).

1

SelectionSort

Data Movements

In pth iteration, number of data movements = 3.

Thus, for p = 1, . . . , N , number of data movements

=

NX

p=1

3 = 3⇥N = O(N)

Therefore, the number of data movements in SelectionSort is O(N).

Number of Comparisons

In pth iteration, number of comparisons = N � p.
Thus, for p = 1, . . . , N , number of comparisons

=

NX

p=1

(N � p)

=

NX

p=1

N �
NX

p=1

p

= (N ⇥N)� (N)(N + 1)/2

= O(N2
)

Therefore, the number of comparisons in SelectionSort is O(N2
).

1

Learn how
to sum
series

SelectionSort – Worst-case space analysis

1/17/17 COT 5407 9

•  Temp Space
§  No extra arrays or

data structures
§  O(1)

MergeSort
•  Divide-and-Conquer Strategy
•  Divide array into two sublists of roughly equal length
•  Sort each sublist “recursively”
•  Merge two sorted lists to get final sorted list

§  Assumption: Merging is faster than sorting from fresh
•  Most of the work is done in merging
•  Process described using a tree

§  Top-down process: Divide each list into 2 sublists
§  Bottom-up process: Merge two sorted sublists into one sorted

sublist

1/17/17 COT 5407 10

1/17/17 COT 5407 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 MergeSort

1/17/17 COT 5407 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Merge uses
an extra

array & lots
of data

movements

1/17/17 COT 5407 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 Assumption: Array A is sorted
from [p..q] and from [q+1..r].

Sentinel Items: Two sentinel
items placed in lists L and R.

Space: Two extra arrays L and
R are used.

Merge: The smaller of the item
in L and item in R is moved to
next location in A

Time : O(length of lists)

MergeSort

1/17/17 COT 5407 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Time Complexity Recurrence: T(N) = 2T(N/2) + O(N)

Solving Recurrence Relations

1/17/17 COT 5407 15

1/17/17 COT 5407 16

Solving Recurrences: Recursion-tree method
•  Substitution method fails when a good guess is not available
•  Recursion-tree method works in those cases

§  Write down the recurrence as a tree with recursive calls as the
children

§  Expand the children
§  Add up each level
§  Sum up the levels

•  Useful for analyzing divide-and-conquer algorithms
•  Also useful for generating good guesses to be used by

substitution method

1/17/17 COT 5407 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1/17/17 COT 5407 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1/17/17 COT 5407 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1/17/17 COT 5407 20

Solving Recurrences using Master Theorem
Master Theorem:

 Let a,b >= 1 be constants, let f(n) be a function, and let

 T(n) = aT(n/b) + f(n)
1.  If f(n) = O(nlog

b
a-e) for some constant e>0, then

 T(n) = Theta(nlog
b
a)

2.  If f(n) = Theta(nlog
b
a), then

 T(n) = Theta(nlog
b
a log n)

3.  If f(n) = Omega(nlog
b
a+e) for some constant e>0, then

 T(n) = Theta(f(n))

1/17/17 COT 5407 21

Solving Recurrences by Substitution
•  Guess the form of the solution
•  (Using mathematical induction) find the constants and show

that the solution works
Example

 T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)
Need T(n) <= cn for some constant c>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2cn/2 + n = (c+1) n

 Our guess was wrong!!

1/17/17 COT 5407 22

Solving Recurrences by Substitution: 2

 T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)
Need T(n) <= cn2 for some constant c>0
Assume T(n/2) <= cn2/4 Inductive hypothesis
Thus T(n) <= 2cn2/4 + n = cn2/2+ n

 Works for all n as long as c>=2 !!
 But there is a lot of “slack”

1/17/17 COT 5407 23

Solving Recurrences by Substitution: 3

 T(n) = 2T(n/2) + n
Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn for some constant c>0
Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <= 2 c(n/2)(log(n/2)) + n

 <= cnlogn -cn + n <= cnlogn
 Works for all n as long as c>=1 !!
 This is the correct guess. WHY?

Show T(n) >= c’nlogn for some constant c’>0

Solving Recurrence Relations

1/17/17 COT 5407 24

QuickSort
MergeSort
•  Divide into 2 equal sublists
•  Sort each sublist “recursively”
•  Merge 2 sorted sublists

§  Assumption: Merging is faster
than sorting from fresh

•  Most of work is done in merging

QuickSort
•  Partition into 2 sublists using a

pivot
•  Sort each sublist “recursively”
•  Concatenate 2 sorted sublists

§  Assumption: Partition is faster
than sorting

•  Most of work is done in partition
•  Process described using a tree

§  Top-down process: Partition
each list into 2 sublists

§  Bottom-up process: Concatenate
two sorted sublists into one
sorted sublist

1/17/17 COT 5407 25

1/17/17 COT 5407 26

Figure 8.10 Quicksort

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Partition Algorithm
•  Pick a pivot
•  Compare each item to a pivot and create two lists:

§  L = list of all items smaller than the pivot
§  R = list of all items larger than the pivot

•  One scan through the list is enough, but seems to need
extra space

•  How to design an in-place partition algorithm!

1/17/17 COT 5407 27

O(N) time

1/17/17 COT 5407 28

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

Partition

1/17/17 COT 5407 29

Page 146, CLRS

QuickSort

Time Complexity
•  T(N) = O(N) + T(N1) + T(N2)
•  On the average, N1 = N2 = N/2
•  Thus, average-case complexity = O(N log N)
•  Worst-case: Either N1 or N2 = 0

§  Thus, T(N) = O(N) + T(N - 1)
§  T(N) = O(N2)

1/17/17 COT 5407 30

