COT 5407: Introduction to Algorithms

Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407517.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output

An Algorithm must <u>halt</u> on every input with <u>correct</u> output.

Algorithm Analysis

- Worst-case time complexity*
- (Worst-case) space complexity
- Average-case time complexity

Worst-Case Analysis

Two Techniques:

- 1. Counts and Summations:
 - Count number of steps from pseudocode and add
- 2. Recurrence Relations:
 - Use invariant, write down recurrence relation and solve it

We will use big-Oh notation to write down time and space complexity (for both worst-case & average-case analyses).

Compute the worst possible time of all input instances of length N.

Definition of big-Oh

- We say that
 - F(n) = O(G(n))
 - If there exists two positive constants, c and n_0 , such that
 - For all n ≥ n_0 , we have $F(n) \le C(n)$
- Thus, to show that F(n) = O(G(n)), you need to find two positive constants that satisfy the condition mentioned above
- Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of c, there does not exist a positive constant n₀ that satisfies the condition mentioned above

SelectionSort – Worst-case analysis

$$\begin{array}{c|c} \text{SELECTIONSORT}(array \ A) \\ 1 & N \leftarrow length[A] \\ 2 & \textbf{for } p \leftarrow 1 \ \textbf{to } N \\ & \textbf{do } \triangleright \text{ Compute } j \\ 3 & j \leftarrow p \\ 4 & \textbf{for } m \leftarrow p+1 \ \textbf{to } N \\ 5 & \textbf{do if } (A[m] < A[j]) \\ 6 & \textbf{then } j \leftarrow m \\ 6 & \textbf{then } j \leftarrow m \end{array} \qquad \begin{array}{c} \text{N-p comparisons} \\ \text{N-p comparisons} \\ & \textbf{b} \text{Swap } A[p] \ \text{and } A[j] \\ 7 & \textbf{temp} \leftarrow A[p] \\ 8 & A[p] \leftarrow A[j] \\ 9 & A[j] \leftarrow temp \end{array} \qquad \begin{array}{c} \text{3 data movements} \\ \text{3 data movements} \\ \end{array}$$

SelectionSort: Worst-Case Analysis

• Data Movements

$$=\sum_{p=1}^{N}3=3\times N=O(N)$$

• Number of Comparisons

$$= \sum_{p=1}^{N} (N-p)$$

= $\sum_{p=1}^{N} N - \sum_{p=1}^{N} p$
= $(N \times N) - (N)(N+1)/2$
= $O(N^2)$

• Time Complexity = $O(N^2)$

SelectionSort – Worst-case space analysis

- Temp Space
 - No extra arrays or data structures

• O(1)

1/17/17

MergeSort

- Divide-and-Conquer Strategy
- Divide array into two sublists of roughly equal length
- Sort each sublist "recursively"
- Merge two sorted lists to get final sorted list
 - Assumption: Merging is faster than sorting from fresh
- Most of the work is done in merging
- Process described using a tree
 - Top-down process: Divide each list into 2 sublists
 - Bottom-up process: Merge two sorted sublists into one sorted sublist

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In A contain their final values, and lightly shaded positions in L and R contain values that have yet to be copied back into A. Taken together, the lightly shaded positions always comprise the values originally in A[9..16], along with the two sentinels. Heavily shaded positions in A contain values that will be copied over, and heavily shaded positions in L and R contain values that have already been copied back into A. (a)–(h) The arrays A, L, and R, and their respective indices k, i, and j prior to each iteration of the loop of lines 12–17. (i) The arrays and indices at termination. At this point, the subarray in A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that have not been copied into A. Merge uses an extra array & lots of data movements

```
MERGE(A, p, q, r)
                                            Assumption: Array A is sorted
 1
     n_1 \leftarrow q - p + 1
                                            from [p..q] and from [q+1..r].
 2 \quad n_2 \leftarrow r - q
 3
     create arrays L[1 \dots n_1 + 1] and R[1 \dots n_2 + 1]
     for i \leftarrow 1 to n_1
 4
 5
                                            Space: Two extra arrays L and
          do L[i] \leftarrow A[p+i-1]
    for j \leftarrow 1 to n_2
                                            R are used.
 6
 7
          do R[j] \leftarrow A[q+j]
 8
    L[n_1+1] \leftarrow \infty
                                            Sentinel Items: Two sentinel
 9
     R[n_2+1] \leftarrow \infty
                                            items placed in lists L and R.
10 \quad i \leftarrow 1
11
    j \leftarrow 1
12
     for k \leftarrow p to r
13
          do if L[i] \leq R[j]
                                            Merge: The smaller of the item
14
                 then A[k] \leftarrow L[i]
                                            in L and item in R is moved to
15
                      i \leftarrow i + 1
                                            next location in A
16
                else A[k] \leftarrow R[j]
17
                      j \leftarrow j+1
                                            Time : O(length of lists)
```

MergeSort

MERGE-SORT(A, p, r)if p < rthen $q \leftarrow \lfloor (p+r)/2 \rfloor$ 2 MERGE-SORT(A, p, q)3 MERGE-SORT(A, q + 1, r)5 MERGE(A, p, q, r)

Time Complexity Recurrence: T(N) = 2T(N/2) + O(N)

COT 5407

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solving Recurrence Relations

Recurrence; Cond	Solution			
T(n) = T(n-1) + O(1)	T(n) = O(n)			
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$			
T(n) = T(n-c) + O(1)	T(n) = O(n)			
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$			
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$			
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$			
a = b				
T(n) = aT(n/b) + O(n);	T(n) = O(n)			
a < b				
T(n) = aT(n/b) + f(n);	T(n) = O(n)			
$f(n) = O(n^{\log_b a - \epsilon})$				
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$			
$f(n) = O(n^{\log_b a})$				
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$			
$f(n) = \Theta(f(n))$				
$af(n/b) \le cf(n)$				

15

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

1/17/17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \ge 1$ be constants, let f(n) be a function, and let

$$T(n) = aT(n/b) + f(n)$$

- 1. If $f(n) = O(n^{\log_{b} a e})$ for some constant e>0, then T(n) = Theta($n^{\log_{b} a}$)
- 2. If $f(n) = Theta(n^{\log_{b} a})$, then T(n) = Theta($n^{\log_{b} a} \log n$)
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then T(n) = Theta(f(n))

Solving Recurrences by Substitution

- Guess the form of the solution
- (Using mathematical induction) find the constants and show that the solution works

Example

T(n) = 2T(n/2) + n

Guess (#1) T(n) = O(n)

Assume

Thus

T(n) <= cn</th>for some constant c>0T(n/2) <= cn/2</td>Inductive hypothesisT(n) <= 2cn/2 + n = (c+1) n</td>Our guess was wrong!!

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n					
Guess (<mark>#2</mark>)	T(n) = O(n²)				
Need	$T(n) <= cn^2$	for some constant c>0			
Assume	T(n/2) <= cn ² /4	Inductive hypothesis			
Thus	$T(n) <= 2cn^2/4 + n$	$= cn^2/2 + n$			
	Works for all n as long as c>=2 !!				
But there is a lot of "slack"					

Solving Recurrences by Substitution: 3

	T(n) = 2T(n/2)) + n			
Guess (<mark>#3</mark>)	T(n) = O(nlogn)				
Need	T(n) <= cnlogn	for some constant c>0			
Assume	T(n/2) <= c(n/2)(log(n/2))) Inductive hypothesis			
Thus	T(n) <= 2 c(n/2)(log(n/2))) + n			
<= cnlogn -cn + n <= cnlogn					
	Works for all n as long as c>=1 !!				
	This is the correct guess. WHY?				
Show	T(n) >= c' nlogn	for some constant c' >0			

Solving Recurrence Relations

Recurrence; Cond	Solution			
T(n) = T(n-1) + O(1)	T(n) = O(n)			
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$			
T(n) = T(n-c) + O(1)	T(n) = O(n)			
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$			
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$			
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$			
a = b				
T(n) = aT(n/b) + O(n);	T(n) = O(n)			
a < b				
T(n) = aT(n/b) + f(n);	T(n) = O(n)			
$f(n) = O(n^{\log_b a - \epsilon})$				
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$			
$f(n) = O(n^{\log_b a})$				
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$			
$f(n) = \Theta(f(n))$				
$af(n/b) \le cf(n)$				

24

QuickSort

MergeSort

- Divide into 2 equal sublists
- Sort each sublist "recursively"
- Merge 2 sorted sublists
 - Assumption: Merging is faster than sorting from fresh
- Most of work is done in merging

QuickSort

- <u>Partition</u> into 2 sublists using a pivot
- Sort each sublist "recursively"
- <u>Concatenate</u> 2 sorted sublists
 - Assumption: Partition is faster than sorting
- Most of work is done in <u>partition</u>
- Process described using a tree
 - Top-down process: Partition each list into 2 sublists
 - Bottom-up process: Concatenate two sorted sublists into one sorted sublist

Figure 8.10 Quicksort

1/17/17

COT 5407

Partition Algorithm

- Pick a pivot
- Compare each item to a pivot and create two lists:
 - L = list of all items smaller than the pivot
 - R = list of all items larger than the pivot
- One scan through the list is enough, but seems to need extra space
- How to design an in-place partition algorithm!

O(N) time

Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

2	1	4	5	0	3	6	8	7	9

1/17/17

QUICKSORT(array A, int p, int r)

1 if (p < r)

QuickSort

 $\mathbf{2}$ then $q \leftarrow \text{PARTITION}(A, p, r)$ QUICKSORT(A, p, q-1)3 QUICKSORT(A, q+1, r)4

To sort array call QUICKSORT(A, 1, length[A]).

PARTITION(array A, int p, int r)

1 $x \leftarrow A[r]$ \triangleright Choose **pivot** $2 \quad i \leftarrow p-1$ 3 for $j \leftarrow p$ to r-1do if $(A[j] \leq x)$ 4 5then $i \leftarrow i+1$ 6 exchange $A[i] \leftrightarrow A[j]$ exchange $A[i+1] \leftrightarrow A[r]$ 7 return i+18 1/17/17COT 5407

Page 146, CLRS

Time Complexity

- $T(N) = O(N) + T(N_1) + T(N_2)$
- On the average, $N_1 = N_2 = N/2$
- Thus, average-case complexity = O(N log N)
- Worst-case: Either N_1 or $N_2 = 0$
 - Thus, T(N) = O(N) + T(N 1)
 - T(N) = O(N²)