COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A: Phone: x3748

giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407 517 html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

1/17/17 COT 5407 1

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

1/17/17 COT 5407

Definitions

Abstract Problem: defines a function from any allowable mpuT
to a corresponding output

Instance of a Problem: a specific input to abstract problem

Algorithm: well-defined computational procedure that takes an
instance of a problem as input and produces the correct
output

An Algorithm must halt on every input with correct output.

1/17/17 COT 5407 3

Algorithm Analysis

« Worst-case time complexity™*
* (Worst-case) space complexity
+ Average-case time complexity

1/17/17 COT 5407

Worst-Case Analysis

Two Techniques:

1. Counts and Summations:
= Count number of steps from pseudocode and add

2. Recurrence Relations:
= Use invariant, write down recurrence relation and solve it

We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

Compute the worst possible time of all input instances of
length N.

1/17/17 COT 5407 5

Definition of big-Oh

* We say that
" F(n) = O(6(n))
If there exists two positive constants, ¢ and n,, such that

= For all n 2 ny, we have F(n) < ¢ 6(n)
Thus, to show that F(n) = O(6(n)), you need to find two positive
constants that satisfy the condition mentioned above

Also, to show that F(n) # O(G(n)), you need to show that for any value of
c, there does not exist a positive constant ny that satisfies the condition
mentioned above

1/17/17 COT 5407 6

SelectionSort — Worst-case analysis

SELECTIONSORT(array A)

1 N « length|A]
2 forp—1to N
do > Compute 7

3 JD
4 form—p+1to N
5 do if [(Alm] < A[j]) N-p comparisons
§ then j — m

> Swap Alp| and A|j]
; Z&p: AI?J%? | 3 data movements
9 Alj] < temp

1/17/17 COT 5407 7

SelectionSort: Worst-Case Analysis

 Data Movements

* Number of Comparisons

:§3:3><N:O(N)

p=1

Learn how
To sum

N

N ~ series
—~ Z;(N—p) ®
N N O
= ZN_ZP o
= (NXxN)—(N)(N+1)/2
= O(N?)

« Time Complexity = O(N?)

1/17/17 COT 5407 8

SelectionSort — Worst-case space analysis

SELECTIONSORT(array A) - Temp Space

1 N « length|A] = No extra arrays or

2 forp—1to N data structures
do > Compute j = O(1)

3 J—p

4 form«<—p+1to N

5 do if (Am] < A|j))

§ then j — m

> Swap Alp| and A|j]

temp «— A[p]
Alp| < Al
) Alj] « temp

|

Co

1/17/17 COT 5407 9

MergeSort

Divide-and-Conquer Strategy

Divide array into two sublists of roughly equal length
Sort each sublist “recursively”

Merge two sorted lists to get final sorted list

= Assumption: Merging is faster than sorting from fresh
Most of the work is done in merging

Process described using a tree
= Top-down process: Divide each list into 2 sublists

= Bottom-up process: Merge two sorted sublists into one sorted
sublist

1/17/17 COT 5407 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sorted sequence M erge S Ort

1 2 2 3 4 5 6 il
/ merge \

e TSR R 1 2 B 6
/ merge \ / merge
s el 1 3 B
merg& merge /nerg& merge
5 2 4 7 1 3 2 (6]

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5, 2,4, 7, 1, 3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LD i L6 1] U § 010 111213 14 15 16 17 8910 11213 14 15 16 |7
Al IDEE A...tzz.ui.i
k y
i [
AT Nree 4 5 | 2 4§ | 33 4 | 234§
L L[2]4]sT7Te] # B2]3T6T e -
i .j 57w R-6°° L S1T=| R ®
0 o) ! J ' J
(¢) (f
8 9 10 11 1213 4 15 16 17 8 9 10 11 12 13 1415 16 17
A“"_Z A"'”z_z § 910 10 12 13 M 15 16 17 § 9 10 11 1213 1415 16 17
: £ WORRRO0E B SIEPBOED B
2.3 4 5] 234§ 1 23 4 5 2 3 45 I I
L-457w RE2T3]6Tw LTS T
i j i j 1234 ﬁzs 123408 1234
M ¢ - L.HR
®

Figure 2.3 The operation of lines 10~17 in the call MERGE(A, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1,2, 3, 6). After copying and inserting sentinels, the
array L contains (2,4, 5,7, 00}, and the array R contains {1, 2, 3, 6, oc). Lightly shaded positions § 9
in A contain their final values, and lightly shaded positions in L and R contain values that have yel Al
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9.. 16}, along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)~(h) The arrays A, L, and R, and their respective indices £, i, and
prior o each iteration of the loop of lines 12-17, (i) The arrays and indices at termination, At this
point, the subarray in A(9., 16] is sorted, and the two sentinels in L and R are the only two elements
in these arrays that have not been copied into A,

Merge uses

0 ~JdJONhn B W N -

N = O \O

13
14
15
16
17

Convriaht © The McGraw-Hill Combanies. Inc. Permission reauired for renroduction or display.

MERGE(A, p, q,r)

ny<q—p-+1

Ny <~ r —¢g

Assumption: Array A is sorted
from [p..q] and from [g+1..r].

create arrays L[1..n; + 1] and R[1..n, + 1]

fori < 1 to n;
do L[i] < Alp +i — 1]
for j < 1 ton,
do R[j] < Alg + j]
Lin,+ 1] <« o0
R[n, + 1] « o
I <1
J <1
fork < ptor
do if L[] < R[]
then Alk] < LJi]
I <— 1+ 1
else A[k] < R[/]
) &= art

Space: Two extra arrays L and
R are used.

Sentinel ltems: Two sentinel
items placed in lists L and R.

Merge: The smaller of the item
in L and item in R is moved to

next location in A

Time : O(length of lists)

MergeSort

MERGE-SORT(A, p,r)

1 ifp<r

2 theng < [(p +7r)/2]

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, g + 1, r)
5 MERGE(A, p, g, r)

Time Complexity Recurrence: T(N) = 2T(N/2) + O(N)

1/17/17 COT 5407 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solving Recurrence Relations

Recurrence; Cond Solution
T(n)=T(n-—-1)4+ 0O(1) T(n) = 0O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = 0O(n)
T(n) =T(n——c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = O(nlogn)

T(n) = aT(n/b) T O(n);

T(n) = O(nlogn)

a=~5

T(a) = Gt (nB -+ Ofw, T(n) = O(n)
a <

T(n) =aT(n/b) + f(n); T(n) = O(n)

f(n) = O(nlo%a=<)

T'(n) = al(n/b) + f(n),
f(n) = O(n'°%)

T(n) = ©(n'°%%|ogn)

T(n) = al(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%%|ogn)

15

Solving Recurrences: Recursion-tree method

Substitution method fails when a good guess is not available

Recursion-tree method works in those cases

= Write down the recurrence as a tree with recursive calls as the
children

= Expand the children
= Add up each level
= Sum up the levels

Useful for analyzing divide-and-conquer algorithms

Also useful for generating good guesses to be used by
substitution method

1/17/17 COT 5407 16

1/17/17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

T(n) on cn
/NN
T(n/2) T(nf2) enf2 cnf2
AVA
T(n/4) T(n/4) T(n/4) T(n/4)
(a) (b) (©)
A cn i cn

[P e en

A,

cnfd cnf4 cnf4 cnfd wesnie en

AARNARA

(o)

n

(@) Total: cnlgn + cn

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T (n/2) + cn.
Part (a) shows T (n), which is progressively expanded in (b)~(d) to form the recursion tree. The
fully expanded tree in part (d) has 1g + 1 levels (i.c., it has height Ig #, as indicated), and each level
contributes a total cost of cn. The total cost, therefore, is cn lgn + cn, which is ©(n 1gn).

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

T{n)

/

-

cns

\

T TR TG

(@)

1/17/17

e

(b)

e

/

/u)2

on 2

c(3)?

T

c(§)?

N/

\

BT TE T T TE TE T T

e e

(©)

Y TQ) T() TQ) T() TA) T() TC) T() TA) TQ) -es

R

nhomd

()

T(1) T() T(1) i

O(n's?)

Figure 4.1 The comstruction of a recursion tree for the recurrence T(n) =
Part (a} shows T (n), which is progressively expanded in (b)=(d) to form the recursion tree. Thc
fully expanded tree in part (d) has height fog, 7 (it has logg n 4 1 levels).

Total: O(n®)

3T(n/4) + on?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/\

.‘

.
— ieenssaasnannnnsnnnfe-
.

/N A

V(2 (2 4 ;
c®) @) @) () i
! \ ! \ / \ I \
/ \ / \ ! \ / \
! \ / \ I \ / \
/ \ ! \ ! \ ! \

chn

Ch

cn

Total: O(nlgn)

Figure 4.2 A recursion tree for the recurrence T (n) = T (n/3) + T (2n/3) + cn.

Lrrsr1/ CU1 O04V/

1y

Solving Recurrences using Master Theorem

Master Theorem:
Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

1. If f(n) = O(nlos a-¢) for some constant e>0, then
T(n) = Theta(nlo9,°)

2. If f(n) = Theta(nlo9,), then
T(n) = Theta(nlos, 2 log n)

3. If f(n) = Omega(n'o9,2¢) for some constant e>0, then
T(n) = Theta(f(n))

1/17/17 COT 5407 20

Solving Recurrences by Substitution

* Guess the form of the solution

* (Using mathematical induction) find the constants and show
that the solution works

Example

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)

Need T(n) <= ¢cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <= 2cn/2 + n=(c+1) n

Our guess was wrong!!

1/17/17 COT 5407 21

Solving Recurrences by Substitution:

T(n) = 2T(n/2) + n

Guess (#2) T(n) = O(n?)
Need
Assume

Thus

1/17/17

T(n) <= cn? for some constant ¢>0
T(n/2) <= cn?/4 Inductive hypothesis
T(n) <= 2cn2/4 + n = cn?/2+ n

Works for all n as long as c>=2 |l

But there is a lot of “slack”

COT 5407

22

Solving Recurrences by Substitution: 3
T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)

Need T(n) <= cnlogn for some constant ¢>0
Assume T(n/2) <= c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <= 2 ¢(n/2)(log(n/2)) + n

<= cnlogn -cn + n <= cnlogn
Works for all n as long as c>=1 I

This is the correct guess. WHY?
Show T(n) >= ¢’ nlogn for some constant ¢’ >0

1/17/17 COT 5407 23

Solving Recurrence Relations

Recurrence; Cond Solution
T(n)=T(n-—-1)4+ 0O(1) T(n) = 0O(n)
T(n) =T(n—1)+ O(n) T(n) = O(n?)
T(n)=T(n—c)+ O(1) T(n) = 0O(n)
T(n) =T(n——c)+ O(n) T(n) = O(n?)

T(n) =2T(n/2)+ O(n)

T(n) = O(nlogn)

T(n) = aT(n/b) T O(n);

T(n) = O(nlogn)

a=~5

T(a) = Gt (nB -+ Ofw, T(n) = O(n)
a <

T(n) =aT(n/b) + f(n); T(n) = O(n)

f(n) = O(nlo%a=<)

T'(n) = al(n/b) + f(n),
f(n) = O(n'°%)

T(n) = ©(n'°%%|ogn)

T(n) = al(n/b) + f(n);
f(n) = ©(f(n))
af (n/b) < ef(n)

T(n) = Q(n'°%%|ogn)

24

QuickSort

MergeSort QuickSort
 Divide into 2 equal sublists Partition into 2 sublists using a
* Sort each sublist "recursively” pivot
- Merge 2 sorted sublists Sort each sublist "recursively”
= Assumption: Merging is faster Concatenate 2 sorted sublists
than sorting from fresh = Assumption: Partition is faster
- Most of work is done in merging than sorting

* Most of work is done in partition

 Process described using a tree

= Top-down process: Partition
each list into 2 sublists

= Bottom-up process: Concatenate
two sorted sublists into one
sorted sublist

1/17/17 COT 5407 25

Figure 8.10 Quicksort

¢ Partition
Quicksort Quicksort
small items large items

1/17/17 COT 5407 26

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Partition Algorithm

Pick a pivot
Compare each item to a pivot and create two lists:

= L = list of all items smaller than the pivot .
. . . D O(N) time
= R = list of all items larger than the pivot

One scan through the list is enough, but seems to need
extra space

How to design an in-place partition algorithm!

1/17/17 COT 5407 27

Partition

Figure A If 6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B Result after Partitioning

2

1

4

5

1/17/17

COT 5407

Data Structures & Problem Solving using JAVA/2E

28

Mark Allen Weiss ~ © 2002 Addison Wesley

QUICKSORT (array A,int p,int r)

1 if (p<r)

QuickSort 2 then ¢ « PARTITION(A, p, r)
3 QUICKSORT(A,p,q — 1)
4 QUICKSORT(A, ¢+ 1,7)

To sort array call QUICKSORT(A, 1, length|A)).

PARTITION(array A,int p,int r)

z — Alr| > Choose pivot
1—p—1
for j — ptor—1
do if (Alj] <
theni «— i1+ 1
exchange Ali] < Alj]
exchange At + 1] <« Alr] Page 146, CLRS

return ¢ + 1
1/17/17 COT 5407 29

=~ QO DN —

o J O Ot

Time Complexity

* T(N) = O(N) + T(Ny) + T(N,)
* On the average, N; = N, = N/2
 Thus, average-case complexity = O(N log N)
« Worst-case: Either N; or N, = 0
= Thus, T(N) = O(N) + T(N - 1)
= T(N) = O(N°)

1/17/17 COT 5407

30

