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Sorting Algorithms
•  SelectionSort 
•  InsertionSort 
•  BubbleSort 
•  ShakerSort 
•  MergeSort 
•  HeapSort 
•  QuickSort 
•  Bucket & Radix Sort 
•  Counting Sort 
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Definitions
Abstract Problem: defines a function from any allowable input 

to a corresponding output  
 
 
 
 
Instance of a Problem: a specific input to abstract problem 
Algorithm: well-defined computational procedure that takes an 

instance of a problem as input and produces the correct 
output 

An Algorithm must halt on every input with correct output. 
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Algorithm Analysis
•  Worst-case time complexity* 
•  (Worst-case) space complexity 
•  Average-case time complexity 



Worst-Case Analysis
Two Techniques: 
1.  Counts and Summations: 

§  Count number of steps from pseudocode and add 
2.  Recurrence Relations: 

§  Use invariant, write down recurrence relation and solve it 
 
We will use big-Oh notation to write down time and space 
complexity (for both worst-case & average-case analyses). 
 
Compute the worst possible time of all input instances of 
length N.  
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Definition of big-Oh
•  We say that  

§  F(n) = O(G(n)) 
     If there exists two positive constants, c and n0, such that  

§  For all n ≥ n0, we have F(n) ≤ c G(n) 
•  Thus, to show that F(n) = O(G(n)), you need to find two positive 

constants that satisfy the condition mentioned above 
•  Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of 

c, there does not exist a positive constant n0 that satisfies the condition 
mentioned above 
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SelectionSort – Worst-case analysis

N-p comparisons

3 data movements



SelectionSort: Worst-Case Analysis
•  Data Movements 

•  Number of Comparisons 

 
•  Time Complexity = O(N2) 
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SelectionSort

Data Movements

In pth iteration, number of data movements = 3.

Thus, for p = 1, . . . , N , number of data movements

=

NX

p=1

3 = 3⇥N = O(N)

Therefore, the number of data movements in SelectionSort is O(N).

Number of Comparisons

In pth iteration, number of comparisons = N � p.
Thus, for p = 1, . . . , N , number of comparisons

=

NX

p=1

(N � p)

=

NX

p=1

N �
NX

p=1

p

= (N ⇥N)� (N)(N + 1)/2

= O(N2
)

Therefore, the number of comparisons in SelectionSort is O(N2
).
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series 



SelectionSort – Worst-case space analysis
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•  Temp Space 
§  No extra arrays or 

data structures 
§  O(1) 



MergeSort
•  Divide-and-Conquer Strategy 
•  Divide array into two sublists of roughly equal length 
•  Sort each sublist “recursively” 
•  Merge two sorted lists to get final sorted list 

§  Assumption: Merging is faster than sorting from fresh 
•  Most of the work is done in merging 
•  Process described using a tree 

§  Top-down process: Divide each list into 2 sublists 
§  Bottom-up process: Merge two sorted sublists into one sorted 

sublist 
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 MergeSort 
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Merge uses 
an extra 

array & lots 
of data 

movements 
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 Assumption: Array A is sorted 
from [p..q] and from [q+1..r]. 

Sentinel Items: Two sentinel 
items placed in lists L and R.

Space: Two extra arrays L and 
R are used. 

Merge: The smaller of the item 
in L and item in R is moved to 
next location in A

Time : O(length of lists)



MergeSort
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Time Complexity Recurrence: T(N) = 2T(N/2) + O(N) 



Solving Recurrence Relations
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Solving Recurrences: Recursion-tree method
•  Substitution method fails when a good guess is not available 
•  Recursion-tree method works in those cases 

§  Write down the recurrence as a tree with recursive calls as the 
children 

§  Expand the children  
§  Add up each level  
§  Sum up the levels 

•  Useful for analyzing divide-and-conquer algorithms 
•  Also useful for generating good guesses to be used by 

substitution method 
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Solving Recurrences using Master Theorem
Master Theorem: 

 Let a,b >= 1 be constants, let f(n) be a function, and let  

   T(n) = aT(n/b) + f(n) 
1.  If f(n) = O(nlog

b
a-e) for some constant e>0, then   

  T(n) = Theta(nlog
b
a) 

2.  If f(n) = Theta(nlog
b
a), then      

  T(n) = Theta(nlog
b
a log n) 

3.  If f(n) = Omega(nlog
b
a+e) for some constant e>0, then  

  T(n) = Theta(f(n)) 
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Solving Recurrences by Substitution
•  Guess the form of the solution 
•  (Using mathematical induction) find the constants and show 

that the solution works 
Example 

   T(n) = 2T(n/2) + n 
Guess (#1)  T(n) = O(n) 
Need   T(n) <= cn   for some constant c>0 
Assume  T(n/2) <= cn/2  Inductive hypothesis 
Thus   T(n) <= 2cn/2 + n = (c+1) n  

   Our guess was wrong!! 
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Solving Recurrences by Substitution: 2

   T(n) = 2T(n/2) + n 
Guess (#2)  T(n) = O(n2) 
Need   T(n) <= cn2   for some constant c>0 
Assume  T(n/2) <= cn2/4  Inductive hypothesis 
Thus   T(n) <= 2cn2/4 + n = cn2/2+ n  

   Works for all n as long as c>=2 !! 
   But there is a lot of “slack” 
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Solving Recurrences by Substitution: 3

   T(n) = 2T(n/2) + n 
Guess (#3)  T(n) = O(nlogn) 
Need   T(n) <= cnlogn   for some constant c>0 
Assume  T(n/2) <= c(n/2)(log(n/2))  Inductive hypothesis 
Thus   T(n) <= 2 c(n/2)(log(n/2)) + n  

          <= cnlogn -cn + n <= cnlogn  
   Works for all n as long as c>=1 !! 
   This is the correct guess. WHY? 

Show   T(n) >= c’nlogn   for some constant c’>0 



Solving Recurrence Relations
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QuickSort
MergeSort 
•  Divide into 2 equal sublists 
•  Sort each sublist “recursively” 
•  Merge 2 sorted sublists 

§  Assumption: Merging is faster 
than sorting from fresh 

•  Most of work is done in merging 

QuickSort 
•  Partition into 2 sublists using a 

pivot 
•  Sort each sublist “recursively” 
•  Concatenate 2 sorted sublists 

§  Assumption: Partition is faster 
than sorting 

•  Most of work is done in partition 
•  Process described using a tree 

§  Top-down process: Partition 
each list into 2 sublists 

§  Bottom-up process: Concatenate 
two sorted sublists into one 
sorted sublist 
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Figure 8.10   Quicksort 

Data Structures & Problem Solving using JAVA/2E       Mark Allen Weiss      © 2002  Addison Wesley 



Partition Algorithm
•  Pick a pivot 
•  Compare each item to a pivot and create two lists: 

§  L = list of all items smaller than the pivot 
§  R = list of all items larger than the pivot 

•  One scan through the list is enough, but seems to need 
extra space 

•  How to design an in-place partition algorithm! 
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O(N) time 
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Figure A  If  6 is used as pivot, the end result after partitioning is as shown in the Figure B.

Figure B  Result after Partitioning

Partition
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Page 146, CLRS 

QuickSort



Time Complexity
•  T(N) = O(N) + T(N1) + T(N2) 
•  On the average, N1 = N2 = N/2 
•  Thus, average-case complexity = O(N log N) 
•  Worst-case: Either N1 or N2 = 0 

§  Thus, T(N) = O(N) + T(N - 1) 
§  T(N) = O(N2) 
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