COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A: Phone: x3748

giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407 517 html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

1/24/17 COT 5407 1

Homework

+ Read Guidelines and Follow Instructions!

+ Statement of Collaboration
= Take it seriously.
= If true, reproduce the statement faithfully.

= For each problem, explain separately the sources and your
collaborations with other people.

= Your homework will not be graded without the statement.

- Extra Credit Problem

= You can turn it in any time within a month or until last class day,
whichever is earlier.

= If you are not sure of your solution, don’ t waste my time.
= You will NOT get partial credit on an extra credit problem.
= Submit it separately and label it appropriately.

9/30/08 COT 5407 2

QuickSort: variant for Partition

+ At the start of iteration j,
= A[l.i] has elements that are smaller than or equal to pivot x
= A[i+l..j-1] has elements that are larger than pivot x
= A[j..r-1] have not yet been processed
= A[r] has the pivot x

* Try to prove this invariant!

< pivot > pivot unprocessed

----T-----

p i j r

‘Warning: Quicksort cannot be used if a sorting algorithm is
needed that runs in time O(n log n) in the worst case.

1/24/17 COT 5407 3

Storing binary trees as arrays

20| 7 (38| 4 | 16 | 37 | 43

1/24/17 COT 5407

Heaps (Max-Heap)

43 | 16 (38| 4 | 7 | 37 | 20

43 | 16 (38| 4 | 7 | 37 | 20| 2 3 6 1 | 30

HEAP represents a binary tree stored as an array
such that:
* Tree is filled on all levels except the last level
* Last level is filled from left to right
» Left & right child of i are in locations 2i and 2i+1
- HEAP PROPERTY:

Parent value is at least as large as child’ s value

1/24/17 COT 5407

HeapSort

* First convert array into a heap (BUILD-MAX-HEAP, p157)
« Then convert heap into sorted array (HEAPSORT, p160)

1/24/17 COT 5407 6

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sortl/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

1/24/17 COT 5407 7

HeapSort: Part 1

MAX-HEAPIFY (array A, int 1)

> Assume subtree rooted at ¢ is not a heap;
> but subtrees rooted at children of 7 are heaps
| < LEFT[]
r «— RIGHT]i]
if ((I < heap-size|A]) and (A[l] > Ali]))
then largest < [
else largest < 1
if ((r < heap-size|A|) and (Alr] > Allargest]))
then largest < r
if (largest # 1)
then exchange Ali] < Allargest]
MAX-HEAPIFY (A, largest) pl154, CLRS

O O 00 ~J O T i W N +—

—

1/24/17 COT 5407 8

[—
O O© 00~ O U = W N+~

Analysis of Max-Heapity

MAX-HEAPIFY (array A, int i)

> Assume subtree rooted at ¢ is not a heap;

> but subtrees rooted at children of ¢ are heaps

[— LEFT[i]

r «— RIGHT]i]

if ((I < heap-size|A]) and (A[l] > Ali]))
then largest «— [
else largest <1

if ((r < heap-size[A]) and (Alr] > Allargest]))

then largest «— r
if (largest # 1)
then exchange Ali] < A[largest]
MAX-HEAPIFY (A, largest)

1/24/17

COT 5407

T(N) < T(2N/3) + O(1)
When called on node i,
either it terminates
with O(1) steps or
makes a recursive call
onh node at lower level

At most 1 call per level

Time Complexity =
O(level of node i) =
O(h)) = O(log N)

HeapSort: Part 2

BUuiLD-MAX-HEAP(array A)

1 heap-size|A] « length|A]

2 for i « |length|A]/2| downto 1
3 do MAX-HEAPIFY (A, 1)

1/24/17 COT 5407

10

HeapSort: Part 2

BUuiLD-MAX-HEAP(array A)

1 heap-size|A] « length|A]

2 for i « |length|A]/2| downto 1
3 do MAX-HEAPIFY (A, 1)

HEAPSORT(array A)

1 BuiLD-MAXx-HEAP(A)

2 for i « length|A] downto 2

3 do exchange A[l] < Ali] Total:
heap-size[A] < heap-size[A] — 1| O(logn) { O(nlog n)
MAX-HEAPIFY(A, 1)

i

(@

1/24/17 COT 5407 11

HeapSort: Part 2

BUILD-MAX-HEAP(array A)

1 heap-size|A| < length|A]

2 for i« |length|A|/2] downto 1
3 do MAX-HEAPIFY(A, 1)

* For n/2 nodes, height is 1 and # of comparisons = 0,

* For n/4 nodes, height is 2 and # of comparisons =1,

 For n/8 nodes, height is 3 and # of comparisons = 2, ...

» Total = summation ((height -1) X # of nodes at that height)
 Total = summation ((height - 1) X N/2height)

 Total < summation (height X N/2height)

+ Total < N X summation (height X 1/2height)

1/24/17 COT 5407 12

Build-Max-Heap Analysis

|log n | 7
We need to compute: Z oh Build-Max-Heap: O(N)
h=0
> 1
We know that Z ® =
T |l =&
> 1
Differnetiating both sides, we get Z kel = :
— (1 —2x)
Multiplying both sides by x, weget Z kz® = u >
— (1 —2x)
|[logn |
Setting x = 1/2, we can show that »_ T < 2
h=0

1/24/17 COT 5407 13

HeapSort

* Single call to Max-
Heapify runs in O(h)

BUILD-MAX-HEAP (array A) time

1 heap-size|A] < length[A] .

2 for i < |length[A]/2] downto 1 H owever, BUlId"MGX‘

: do Max-HEAPIFY(4,) Heap runs in O(N) time
« HeapSort runs in O(N

HEAPSORT(array A) .

1 BuiLD-MAX-HEAP(A) 09 N) Time

2 for i « length|A] downto 2

3 do exchange A[l] « Ali]

4 heap-size[A] « heap-size|A] — 1

MAX-HEAPIFY(A, 1)

IR

1/24/17 COT 5407 14

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

1/24/17 COT 5407 15

Upper and Lower Bounds

+ Time Complexity of a Problem

= Difficulty: Since there can be many algorithms that solve a problem,
what time complexity should we pick?

= Solution: Define upper bounds and lower bounds within which the
time complexity lies.
* What is the upper bound on time complexity of sorting?

= Answer: Since SelectionSort runs in worst-case O(N?) and
MergeSort runs in O(N log N), either one works as an upper bound.

= Critical Point: Among all upper bounds, the best is the lowest
possible upper bound, i.e., time complexity of the best algorithm.
* What is the lower bound on time complexity of sorting?

= Difficulty: If we claim that lower bound is O(f(N)), then we have to
prove that no algorithm that sorts N items can run in worst-case
time o(f(N)).

1/24/17 COT 5407 16

Lower Bounds

Surprisingly, it is possible to prove lower bounds for many
comparison-based problems.

For any comparison-based problem, for any input of length
N, if there are P(N) possible solutions, then any algorithm
must need‘ log,(P(N)) ‘To solve the problem.

Binary Search on a list of N items has at least N + 1 possible
solutions. Hence lower bound is

= log,(N+1).

Sorting a list of N items has at least NI possible solutions.
Hence lower bound is

= Jlog,(N!) = O(N log N)

Thus, MergeSort is an optimal algorithm.

= Because its worst-case time complexity equals lower bound!

1/24/17 COT 5407 17

Beating the Lower Bound

* Bucket Sort
= Runs in time O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sort in O(N)
How is it possible to beat the lower bound?
Only because we know more about the data.
If nothing is know about the data, the lower bound holds.

e Radix Sort
= Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

 Counting Sort
= Runs in time O(N+K) given N items in range [a+1, a+K]

1/24/17 COT 5407 18

Bucket Sort

N integer values in the range [a..a+m-1]
For e.g., sort a list of 50 scores in the range [0..9].
Algorithm
= Make m buckets [a..a+m-1]
= As you read elements throw into appropriate bucket
= Output contents of buckets [0..m] in that order

Time O(N+m)

Warning: This algorithm cannot be used for “infinite-precision” real
numbers, even if the range of values is specified.

1/24/17 COT 5407 19

Stable Sort

* A sort is stable if equal elements appear in the same order
in both the input and the output.

 Which sorts are stable?

1/24/17 COT 5407 20

W N W N W w w
ST D W w o O O,

= N

9
6
0
5

Radix Sort

~N

—
N N WO O w o w w w
w N 01 o1 O 01 W

=)

N N O w o w w w
N W o1 w o1 o1

O v O o

Algorithm
fori=1toddo

Time Complexity: O((N+m) + (N+m?) + ...+ (N+mY))

1/24/17

Space Complexity: O(m¢)

COT 5407

= N O o

W O O

sort array A on digit i using any sorting algorithm

00 N W w w w w

w N O 1 O O W

= O

W O VvV N O

21

Radix Sort

320 720 720 3209
4 5 7 355 3209 355
6 5 7 4 36 4 36 4 36
839‘ 457‘ 8 39 ‘ ~
4 3 6 6 5 7 355 6 57
720 3209 4 57 720
355 8 39 6 5 7 8 39
Algorithm Time Complexity: O((n+m)d)

fori=1toddo

sort array A on digit i using a stable sort algorithm

*Warning: This algorithm cannot be used for “infinite-precision”
real humbers, even if the range of values is specified.

1/24/17 COT 5407 22

Counting Sort

213 |4 15|61|7

Initial Array

Counts

Cumulative O|1121314 15
Counts

*Warning: This algorithm cannot be used for “infinite-precision”
real humbers, even if the range of values is specified.

1/24/17 COT 5407 23

