COT 5407: Introduction to Algorithms

Giri Narasimhan

ECS 254A; Phone: x3748 giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407517.html

https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Homework

Read Guidelines and Follow Instructions!

- Statement of Collaboration
 - Take it seriously.
 - If true, reproduce the statement faithfully.
 - For each problem, explain separately the sources and your collaborations with other people.
 - Your homework will not be graded without the statement.

Extra Credit Problem

- You can turn it in any time within a month or until last class day, whichever is earlier.
- If you are not sure of your solution, don't waste my time.
- You will NOT get partial credit on an extra credit problem.
- Submit it separately and label it appropriately.

QuickSort: variant for Partition

- At the start of iteration j,
 - A[1..i] has elements that are smaller than or equal to pivot x
 - A[i+1..j-1] has elements that are larger than pivot x
 - A[j..r-1] have not yet been processed
 - A[r] has the pivot x
- Try to prove this invariant!

·Warning: Quicksort cannot be used if a sorting algorithm is needed that runs in time O(n log n) in the worst case.

1/24/17

Storing binary trees as arrays

20	7	38	4	16	37	43
----	---	----	---	----	----	----

Heaps (Max-Heap)

HEAP represents a binary tree stored as an array such that:

- Tree is filled on all levels except the last level
- Last level is filled from left to right
- Left & right child of i are in locations 2i and 2i+1
- HEAP PROPERTY

Parent value is at least as large as child's value

HeapSort

- First convert array into a heap (BUILD-MAX-HEAP, p157)
- Then convert heap into sorted array (HEAPSORT, p160)

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

```
Max-Heapify(array A, int i)
     \triangleright Assume subtree rooted at i is not a heap;
     \triangleright but subtrees rooted at children of i are heaps
 1 l \leftarrow \text{Left}[i]
 2 r \leftarrow \text{Right}[i]
 3 if ((l \leq heap\text{-}size[A]) \ and \ (A[l] > A[i]))
         then largest \leftarrow l
 5
         else largest \leftarrow i
    if ((r \leq heap\text{-}size[A]) \ and \ (A[r] > A[largest]))
         then largest \leftarrow r
     if (largest \neq i)
         then exchange A[i] \leftrightarrow A[largest]
 9
                                                              p154, CLRS
                 Max-Heapify(A, largest)
10
```

1/24/17

Analysis of Max-Heapify

```
Max-Heapify(array A, int i)
     \triangleright Assume subtree rooted at i is not a heap;
     \triangleright but subtrees rooted at children of i are heaps
     l \leftarrow \text{Left}[i]
    r \leftarrow \text{Right}[i]
     if ((l \leq heap\text{-}size[A]) \text{ and } (A[l] > A[i]))
         then largest \leftarrow l
 5
         else largest \leftarrow i
     if ((r \leq heap\text{-}size[A]) \ and \ (A[r] > A[largest]))
         then largest \leftarrow r
     if (largest \neq i)
         then exchange A[i] \leftrightarrow A[largest]
 9
10
                 Max-Heapify(A, largest)
```

- $T(N) \le T(2N/3) + O(1)$
- When called on node i, either it terminates with O(1) steps or makes a recursive call on node at lower level
- At most 1 call per level
- Time Complexity =
 O(level of node i) =
 O(h_i) = O(log N)

```
BUILD-MAX-HEAP(array A)

1 heap-size[A] \leftarrow length[A]

2 \mathbf{for} \ i \leftarrow \lfloor length[A]/2 \rfloor \ \mathbf{downto} \ 1

3 \mathbf{do} \ \mathrm{MAX-HEAPIFY}(A, i)
```

```
heap\text{-}size[A] \leftarrow length[A]
   for i \leftarrow |length[A]/2| downto 1
           do Max-Heapify(A, i)
HEAPSORT(array A)
   Build-Max-Heap(A)
   for i \leftarrow length[A] downto 2
           do exchange A[1] \leftrightarrow A[i]

heap\text{-}size[A] \leftarrow heap\text{-}size[A] - 1 O(log n) Total:

M_{AX}\text{-}Heappex(A=1) O(nlog n)
                Max-Heapify(A, 1)
```

Build-Max-Heap(array A)

```
Build-Max-Heap(array A)
```

- 1 $heap\text{-}size[A] \leftarrow length[A]$
- 2 for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3 **do** Max-Heapify(A, i)
- For n/2 nodes, height is 1 and # of comparisons = 0,
- For n/4 nodes, height is 2 and # of comparisons = 1,
- For n/8 nodes, height is 3 and # of comparisons = 2, ...
- Total = summation ((height -1) X # of nodes at that height)
- Total = summation ((height 1) X N/2^{height})
- Total ≤ summation (height X N/2height)
- Total ≤ N X summation (height X 1/2^{height})

Build-Max-Heap Analysis

We need to compute:

$$\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$

Build-Max-Heap: O(N)

We know that
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Differnetiating both sides, we get $\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$
Multiplying both sides by x , we get $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$
Setting $x = 1/2$, we can show that $\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le 2$

1/24/17

HeapSort

```
Build-Max-Heap(array A)

1 heap\text{-}size[A] \leftarrow length[A]

2 \mathbf{for} \ i \leftarrow \lfloor length[A]/2 \rfloor \ \mathbf{downto} \ 1

3 \mathbf{do} \ \mathrm{Max-Heapify}(A, i)

HeapSort(array \ A)

1 Build-Max-Heap(A)

2 \mathbf{for} \ i \leftarrow length[A] \ \mathbf{downto} \ 2

3 \mathbf{do} \ \mathrm{exchange} \ A[1] \leftrightarrow A[i]

4 heap\text{-}size[A] \leftarrow heap\text{-}size[A] - 1

5 \mathrm{Max-Heapify}(A, 1)
```

- Single call to Max-Heapify runs in O(h) time
- However, Build-Max-Heap runs in O(N) time
- HeapSort runs in O(N log N) time

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

Upper and Lower Bounds

- Time Complexity of a Problem
 - Difficulty: Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - Solution: Define upper bounds and lower bounds within which the time complexity lies.
- What is the upper bound on time complexity of sorting?
 - Answer: Since SelectionSort runs in worst-case $O(N^2)$ and MergeSort runs in $O(N \log N)$, either one works as an upper bound.
 - Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.
- What is the lower bound on time complexity of sorting?
 - Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no algorithm that sorts N items can run in worst-case time o(f(N)).

Lower Bounds

- Surprisingly, it is possible to prove lower bounds for many comparison-based problems.
- For any comparison-based problem, for any input of length N, if there are P(N) possible solutions, then any algorithm must need $\log_2(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least N + 1 possible solutions. Hence lower bound is
 - $log_2(N+1)$.
- Sorting a list of N items has at least N! possible solutions.
 Hence lower bound is
 - $log_2(N!) = O(N log N)$
- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!

Beating the Lower Bound

- Bucket Sort
 - Runs in time O(N+K) given N integers in range [a+1, a+K]
 - If K = O(N), we are able to sort in O(N)
 - How is it possible to beat the lower bound?
 - Only because we know more about the data.
 - If nothing is know about the data, the lower bound holds.
- Radix Sort
 - Runs in time O(d(N+K)) given N items with d digits each in range [1,K]
- Counting Sort
 - Runs in time O(N+K) given N items in range [a+1, a+K]

Bucket Sort

- N integer values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
 - Make m buckets [a..a+m-1]
 - As you read elements throw into appropriate bucket
 - Output contents of buckets [0..m] in that order
- Time O(N+m)
- Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable?

Radix Sort

Algorithm

for i = 1 to d do

sort array A on digit i using any sorting algorithm

Time Complexity: $O((N+m) + (N+m^2) + ... + (N+m^d))$

Space Complexity: O(m^d)

Radix Sort

Algorithm

for i = 1 to d do

Time Complexity: O((n+m)d)

sort array A on digit i using a stable sort algorithm

·Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.

Counting Sort

Initial Array

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

Counts

0	1	2	3	4	5
2	0	2	3	0	1

Cumulative Counts

0	1	2	3	4	5
2	2	4	7	7	8

•Warning: This algorithm cannot be used for "infinite-precision" real numbers, even if the range of values is specified.