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Homework
•  Read Guidelines and Follow Instructions! 
•  Statement of Collaboration 

§  Take it seriously. 
§  If true, reproduce the statement faithfully. 
§  For each problem, explain separately the sources and your 

collaborations with other people. 
§  Your homework will not be graded without the statement. 

•  Extra Credit Problem 
§  You can turn it in any time within a month or until last class day, 

whichever is earlier. 
§  If you are not sure of your solution, don’t waste my time.  
§  You will NOT get partial credit on an extra credit problem. 
§  Submit it separately and label it appropriately. 



QuickSort: variant for Partition
•  At the start of iteration j, 

§  A[1..i] has elements that are smaller than or equal to pivot x 
§  A[i+1..j-1] has elements that are larger than pivot x 
§  A[j..r-1] have not yet been processed 
§  A[r] has the pivot x 

•  Try to prove this invariant! 
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x 

i p j r 

≤ pivot > pivot unprocessed 

• Warning: Quicksort cannot be used if a sorting algorithm is 
needed that runs in time O(n log n) in the worst case.  
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Storing binary trees as arrays

20 7 38 4 16 37 43 
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Heaps (Max-Heap)

43 16 38 4 7 37 20 

43 16 38 4 7 37 20 2 3 6 1 30 

HEAP represents a binary tree stored as an array  
such that: 
•  Tree is filled on all levels except the last level 
•  Last level is filled from left to right 
•  Left & right child of i are in locations 2i and 2i+1 
•  HEAP PROPERTY: 

Parent value is at least as large as child’s value 
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HeapSort
•  First convert array into a heap (BUILD-MAX-HEAP, p157) 
•  Then convert heap into sorted array (HEAPSORT, p160) 
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Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html 

http://cg.scs.carleton.ca/~morin/misc/sortalg/ 
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HeapSort: Part 1

p154, CLRS 



Analysis of Max-Heapify
•  T(N) ≤ T(2N/3) + O(1) 
•  When called on node i, 

either it terminates 
with O(1) steps or 
makes a recursive call 
on node at lower level 

•  At most 1 call per level 
•  Time Complexity = 

O(level of node i) = 
O(hi) = O(log N) 
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HeapSort: Part 2

O(log n)
Total:
O(nlog n)
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HeapSort: Part 2

O(log n)
Total:
O(nlog n)



HeapSort: Part 2

•  For n/2 nodes, height is 1 and # of comparisons = 0, 
•  For n/4 nodes, height is 2 and # of comparisons = 1, 
•  For n/8 nodes, height is 3 and # of comparisons = 2, …  
•  Total = summation ((height -1) X # of nodes at that height) 
•  Total = summation ((height – 1) X N/2height) 
•  Total ≤ summation (height X N/2height) 
•  Total ≤ N X summation (height X 1/2height) 
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Build-Max-Heap Analysis
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HeapSort

For the HeapSort analysis, we need to compute

blogncX

h=0

h

2h

We know that
1X

k=0

xk =
1

1� x

Di↵ernetiating both sides, we get
1X

k=0

kxk�1 =
1

(1� x)2

Multiplying both sides by x,weget
1X

k=0

kxk =
x

(1� x)2

Setting x = 1/2,we can show that
blogncX

h=0

h

2h
 2

2

We need to compute: Build-Max-Heap: O(N)



HeapSort
•  Single call to Max-

Heapify runs in O(h) 
time 

•  However, Build-Max-
Heap runs in O(N) time 

•  HeapSort runs in O(N 
log N) time 
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Sorting Algorithms
•  SelectionSort 
•  InsertionSort 
•  BubbleSort 
•  ShakerSort 
•  MergeSort 
•  HeapSort 
•  QuickSort 
•  Bucket & Radix Sort 
•  Counting Sort 



Upper and Lower Bounds
•  Time Complexity of a Problem 

§  Difficulty: Since there can be many algorithms that solve a problem, 
what time complexity should we pick? 

§  Solution: Define upper bounds and lower bounds within which the 
time complexity lies. 

•  What is the upper bound on time complexity of sorting? 
§  Answer: Since SelectionSort runs in worst-case O(N2) and 

MergeSort runs in O(N log N), either one works as an upper bound.  
§  Critical Point: Among all upper bounds, the best is the lowest 

possible upper bound, i.e., time complexity of the best algorithm. 
•  What is the lower bound on time complexity of sorting? 

§  Difficulty: If we claim that lower bound is O(f(N)), then we have to 
prove that no algorithm that sorts N items can run in worst-case 
time o(f(N)).  
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Lower Bounds
•  Surprisingly, it is possible to prove lower bounds for many 

comparison-based problems.  
•  For any comparison-based problem, for any input of length 

N, if there are P(N) possible solutions, then any algorithm 
must need log2(P(N)) to solve the problem.  

•  Binary Search on a list of N items has at least N + 1 possible 
solutions. Hence lower bound is  
§  log2(N+1).  

•  Sorting a list of N items has at least N! possible solutions. 
Hence lower bound is 
§  log2(N!) = O(N log N) 

•  Thus, MergeSort is an optimal algorithm.  
§  Because its worst-case time complexity equals lower bound! 
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Beating the Lower Bound
•  Bucket Sort 

§  Runs in time O(N+K) given N integers in range [a+1, a+K] 
§  If K = O(N), we are able to sort in O(N) 
§  How is it possible to beat the lower bound?  
§  Only because we know more about the data.  
§  If nothing is know about the data, the lower bound holds. 

•  Radix Sort 
§  Runs in time O(d(N+K)) given N items with d digits each in range [1,K] 

•  Counting Sort 
§  Runs in time O(N+K) given N items in range [a+1, a+K] 
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Bucket Sort
•  N integer values in the range [a..a+m-1] 
•  For e.g., sort a list of 50 scores in the range [0..9]. 
•  Algorithm 

§  Make m buckets [a..a+m-1] 
§  As you read elements throw into appropriate bucket 
§  Output contents of buckets [0..m] in that order 

•  Time O(N+m) 

•  Warning: This algorithm cannot be used for “infinite-precision” real 
numbers, even if the range of values is specified.  
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Stable Sort
•  A sort is stable if equal elements appear in the same order 

in both the input and the output. 
•  Which sorts are stable?  
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Radix Sort

3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm 

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)
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Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm 

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  
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Counting Sort
1 2 3 4 5 6 7 8 
2 5 3 0 2 3 0 3 

0 1 2 3 4 5 

2 0 2 3 0 1 

0 1 2 3 4 5 

2 2 4 7 7 8 

Initial Array 

Counts 

Cumulative 
Counts 

• Warning: This algorithm cannot be used for “infinite-precision” 
real numbers, even if the range of values is specified.  


