
1/24/17 COT 5407 1

COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A; Phone: x3748

giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

9/30/08 COT 5407 2

Homework
•  Read Guidelines and Follow Instructions!
•  Statement of Collaboration

§  Take it seriously.
§  If true, reproduce the statement faithfully.
§  For each problem, explain separately the sources and your

collaborations with other people.
§  Your homework will not be graded without the statement.

•  Extra Credit Problem
§  You can turn it in any time within a month or until last class day,

whichever is earlier.
§  If you are not sure of your solution, don’t waste my time.
§  You will NOT get partial credit on an extra credit problem.
§  Submit it separately and label it appropriately.

QuickSort: variant for Partition
•  At the start of iteration j,

§  A[1..i] has elements that are smaller than or equal to pivot x
§  A[i+1..j-1] has elements that are larger than pivot x
§  A[j..r-1] have not yet been processed
§  A[r] has the pivot x

•  Try to prove this invariant!

1/24/17 COT 5407 3

x

i p j r

≤ pivot > pivot unprocessed

• Warning: Quicksort cannot be used if a sorting algorithm is
needed that runs in time O(n log n) in the worst case.

1/24/17 COT 5407 4

Storing binary trees as arrays

20 7 38 4 16 37 43

1/24/17 COT 5407 5

Heaps (Max-Heap)

43 16 38 4 7 37 20

43 16 38 4 7 37 20 2 3 6 1 30

HEAP represents a binary tree stored as an array
such that:
•  Tree is filled on all levels except the last level
•  Last level is filled from left to right
•  Left & right child of i are in locations 2i and 2i+1
•  HEAP PROPERTY:

Parent value is at least as large as child’s value

1/24/17 COT 5407 6

HeapSort
•  First convert array into a heap (BUILD-MAX-HEAP, p157)
•  Then convert heap into sorted array (HEAPSORT, p160)

1/24/17 COT 5407 7

Animation Demos

http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

1/24/17 COT 5407 8

HeapSort: Part 1

p154, CLRS

Analysis of Max-Heapify
•  T(N) ≤ T(2N/3) + O(1)
•  When called on node i,

either it terminates
with O(1) steps or
makes a recursive call
on node at lower level

•  At most 1 call per level
•  Time Complexity =

O(level of node i) =
O(hi) = O(log N)

1/24/17 COT 5407 9

1/24/17 COT 5407 10

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

1/24/17 COT 5407 11

HeapSort: Part 2

O(log n)
Total:
O(nlog n)

HeapSort: Part 2

•  For n/2 nodes, height is 1 and # of comparisons = 0,
•  For n/4 nodes, height is 2 and # of comparisons = 1,
•  For n/8 nodes, height is 3 and # of comparisons = 2, …
•  Total = summation ((height -1) X # of nodes at that height)
•  Total = summation ((height – 1) X N/2height)
•  Total ≤ summation (height X N/2height)
•  Total ≤ N X summation (height X 1/2height)

1/24/17 COT 5407 12

Build-Max-Heap Analysis

1/24/17 COT 5407 13

HeapSort

For the HeapSort analysis, we need to compute

blogncX

h=0

h

2h

We know that
1X

k=0

xk =
1

1� x

Di↵ernetiating both sides, we get
1X

k=0

kxk�1 =
1

(1� x)2

Multiplying both sides by x,weget
1X

k=0

kxk =
x

(1� x)2

Setting x = 1/2,we can show that
blogncX

h=0

h

2h
 2

2

We need to compute: Build-Max-Heap: O(N)

HeapSort
•  Single call to Max-

Heapify runs in O(h)
time

•  However, Build-Max-
Heap runs in O(N) time

•  HeapSort runs in O(N
log N) time

1/24/17 COT 5407 14

1/24/17 COT 5407 15

Sorting Algorithms
•  SelectionSort
•  InsertionSort
•  BubbleSort
•  ShakerSort
•  MergeSort
•  HeapSort
•  QuickSort
•  Bucket & Radix Sort
•  Counting Sort

Upper and Lower Bounds
•  Time Complexity of a Problem

§  Difficulty: Since there can be many algorithms that solve a problem,
what time complexity should we pick?

§  Solution: Define upper bounds and lower bounds within which the
time complexity lies.

•  What is the upper bound on time complexity of sorting?
§  Answer: Since SelectionSort runs in worst-case O(N2) and

MergeSort runs in O(N log N), either one works as an upper bound.
§  Critical Point: Among all upper bounds, the best is the lowest

possible upper bound, i.e., time complexity of the best algorithm.
•  What is the lower bound on time complexity of sorting?

§  Difficulty: If we claim that lower bound is O(f(N)), then we have to
prove that no algorithm that sorts N items can run in worst-case
time o(f(N)).

1/24/17 COT 5407 16

Lower Bounds
•  Surprisingly, it is possible to prove lower bounds for many

comparison-based problems.
•  For any comparison-based problem, for any input of length

N, if there are P(N) possible solutions, then any algorithm
must need log2(P(N)) to solve the problem.

•  Binary Search on a list of N items has at least N + 1 possible
solutions. Hence lower bound is
§  log2(N+1).

•  Sorting a list of N items has at least N! possible solutions.
Hence lower bound is
§  log2(N!) = O(N log N)

•  Thus, MergeSort is an optimal algorithm.
§  Because its worst-case time complexity equals lower bound!

1/24/17 COT 5407 17

Beating the Lower Bound
•  Bucket Sort

§  Runs in time O(N+K) given N integers in range [a+1, a+K]
§  If K = O(N), we are able to sort in O(N)
§  How is it possible to beat the lower bound?
§  Only because we know more about the data.
§  If nothing is know about the data, the lower bound holds.

•  Radix Sort
§  Runs in time O(d(N+K)) given N items with d digits each in range [1,K]

•  Counting Sort
§  Runs in time O(N+K) given N items in range [a+1, a+K]

1/24/17 COT 5407 18

1/24/17 COT 5407 19

Bucket Sort
•  N integer values in the range [a..a+m-1]
•  For e.g., sort a list of 50 scores in the range [0..9].
•  Algorithm

§  Make m buckets [a..a+m-1]
§  As you read elements throw into appropriate bucket
§  Output contents of buckets [0..m] in that order

•  Time O(N+m)

•  Warning: This algorithm cannot be used for “infinite-precision” real
numbers, even if the range of values is specified.

1/24/17 COT 5407 20

Stable Sort
•  A sort is stable if equal elements appear in the same order

in both the input and the output.
•  Which sorts are stable?

1/24/17 COT 5407 21

Radix Sort

3 5 9

3 5 7

3 5 1

7 3 9

3 3 6

7 2 0

3 5 5

3 5 9

3 5 7

3 5 1

3 3 6

3 5 5

7 3 9

7 2 0

Algorithm
for i = 1 to d do

sort array A on digit i using any sorting algorithm

Time Complexity: O((N+m) + (N+m2) + …+ (N+md))

3 3 6

3 5 9

3 5 7

3 5 1

3 5 5

7 2 0

7 3 9

3 3 6

3 5 1

3 5 5

3 5 7

3 5 9

7 2 0

8 3 9

Space Complexity: O(md)

1/24/17 COT 5407 22

Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+m)d)

• Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

1/24/17 COT 5407 23

Counting Sort
1 2 3 4 5 6 7 8
2 5 3 0 2 3 0 3

0 1 2 3 4 5

2 0 2 3 0 1

0 1 2 3 4 5

2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

• Warning: This algorithm cannot be used for “infinite-precision”
real numbers, even if the range of values is specified.

